
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2009

Practical security scheme design for resource-
constrained wireless networks
Zhen Yu
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Yu, Zhen, "Practical security scheme design for resource-constrained wireless networks" (2009). Graduate Theses and Dissertations.
11742.
https://lib.dr.iastate.edu/etd/11742

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11742&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11742&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11742&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11742&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11742&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11742&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Fetd%2F11742&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11742?utm_source=lib.dr.iastate.edu%2Fetd%2F11742&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Practical security scheme design for resource-constrained wireless networks

by

Zhen Yu

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:
Yong Guan, Major Professor

Arun Somani
Manimaran Govindarasu

Daji Qiao
Johnny Wong

Iowa State University

Ames, Iowa

2009

Copyright c© Zhen Yu, 2009. All rights reserved.

www.manaraa.com

ii

DEDICATION

To my wife Min and my son Gavin —

Without your love and support, I would not have been able to complete this work.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

ACKNOWLEDGEMENTS . xiii

ABSTRACT . xiv

CHAPTER 1 OVERVIEW . 1

1.1 Introduction . 1

1.2 Resource-constrained Wireless Networks . 3

1.2.1 Ubiquitous Computing . 3

1.2.2 Wireless Sensor Networks . 4

1.2.3 Wireless Personal Area Networks . 5

1.2.4 Observations . 5

1.3 Taxonomy of Malicious Attacks against Wireless Networks 6

1.4 Information Assurance . 8

1.5 Objectives of Research . 9

1.6 Contributions of Research . 11

1.7 Dissertation Organization . 11

CHAPTER 2 REVIEW OF LITERATURE 13

2.1 Key Management for Wireless Sensor Networks 13

2.1.1 Introduction . 13

2.1.2 Threat Model and Goals . 14

2.1.3 Taxonomy of Key Management Schemes 15

www.manaraa.com

iv

2.1.4 Pairwise Key Management Schemes . 17

2.1.5 Group Key Management Schemes . 22

2.1.6 Global Key Management Scheme . 23

2.2 Filtering False Data Injection and DoS Attacks in Wireless Sensor Networks . . 23

2.2.1 Introduction . 23

2.2.2 Survey of Existing Solutions . 24

2.3 Secure Network Coding . 26

2.3.1 Introduction . 26

2.3.2 Solutions to Wiretapping Attacks . 29

2.3.3 Solutions to Pollution Attacks . 34

CHAPTER 3 ENHANCING CONFIDENTIALITY: Providing Key Man-

agement for Wireless Sensor Networks . 37

3.1 Introduction . 37

3.2 Problem Statement . 39

3.2.1 Deployment Model . 39

3.2.2 Threat Model . 41

3.2.3 Bootstrapping Problem . 41

3.3 Our Scheme . 43

3.3.1 Background: Blom’s Key Management Scheme 43

3.3.2 Overview . 43

3.3.3 Detailed Procedures . 45

3.3.4 Variants of Our Scheme . 48

3.3.5 Shape of Grids . 51

3.4 Connectivity Analysis . 53

3.4.1 Grid Size Control . 53

3.4.2 Transmission Range Setup . 55

3.5 Security Analysis . 58

3.5.1 Evaluation Metrics . 58

www.manaraa.com

v

3.5.2 Theoretical Analysis of Local Security 58

3.6 Simulation Study . 62

3.6.1 Simulation Setup . 62

3.6.2 Simulation Study on Local Security . 64

3.6.3 Simulation Study on Global Security . 65

3.6.4 Simulation Study on Connectivity . 67

3.6.5 Impact of Grid Size . 68

3.6.6 Impact of Estimation Error . 72

3.7 Conclusion . 73

CHAPTER 4 ENHANCING AUTHENTICITY AND AVAILABILITY:

Filtering False Data Injection and DOS Attacks in Wireless Sensor Net-

works . 74

4.1 Introduction . 74

4.2 Routing Protocols for Sensor Networks . 76

4.3 Problem Statement . 77

4.3.1 System Model . 77

4.3.2 Threat Model . 79

4.3.3 Goals . 80

4.4 Our Scheme . 81

4.4.1 Overview . 81

4.4.2 Detailed Procedures . 82

4.5 Performance Analysis . 91

4.5.1 Filtering capacity . 91

4.5.2 Energy Savings . 92

4.5.3 Filtering DoS Attacks . 95

4.5.4 Filtering Other Attacks . 96

4.6 Simulation Study . 98

4.6.1 Simulation Setup . 98

www.manaraa.com

vi

4.6.2 Simulation Results . 99

4.7 Conclusion . 107

CHAPTER 5 ENHANCING INTEGRITY: Securing Network Coding against

Pollution Attacks . 109

5.1 Introduction . 109

5.2 Problem Statement . 111

5.2.1 System Model . 111

5.2.2 Threat Model . 113

5.2.3 Goal . 114

5.3 Our Scheme . 114

5.3.1 The Framework of Hashing or Signature Schemes 114

5.3.2 Overview and Detailed Procedures . 115

5.3.3 Batch Verification . 118

5.4 Security Analysis . 119

5.5 An Alternate Lightweight Scheme . 120

5.5.1 Detailed Procedures . 120

5.5.2 Security Analysis . 122

5.6 Experimental Results . 123

5.6.1 Experiment Setup . 123

5.6.2 Computation Overhead . 124

5.7 Application to Wireless Sensor Networks . 126

5.8 Conclusion . 128

CHAPTER 6 ENHANCING INTEGRITY: Securing XOR Network Cod-

ing against Pollution Attacks . 129

6.1 Introduction . 129

6.2 Problem Statement . 130

6.2.1 System Model . 130

6.2.2 Threat Model and Goal . 132

www.manaraa.com

vii

6.3 Notation . 133

6.4 Our Scheme . 133

6.4.1 The Framework for Securing Network Coding against Pollution Attacks 133

6.4.2 The Detailed Procedure of Our Scheme 134

6.4.3 Batch Verification . 138

6.5 Performance Analysis . 139

6.5.1 Threat Analysis . 139

6.5.2 Security Analysis . 140

6.5.3 Analysis of Communication Overhead 143

6.6 Experimental Results . 144

6.6.1 Experiment Setup . 144

6.6.2 Detection Capability . 144

6.6.3 Computation Overhead . 147

6.7 Conclusion and Future Work . 150

CHAPTER 7 SUMMARY . 153

7.1 Conclusion . 153

7.2 Future Work . 154

BIBLIOGRAPHY . 157

www.manaraa.com

viii

LIST OF TABLES

Table 2.1 A Taxonomy of Key Management Schemes for Wireless Sensor Networks 16

Table 3.1 Comparison among assignments given different shapes of grids 52

Table 3.2 Simulation Setup . 63

Table 3.3 Comparison of connectivity among various schemes 68

Table 4.1 The average number of hops traveled by false reports. 106

Table 5.1 Computation overhead of different schemes on Pentium-4 computer (m:

256-bit and n: 128-bit) . 124

Table 5.2 Computation overhead of different schemes on wireless sensor nodes (p:

512-bit, q: 128-bit, m=16 and n=8) . 128

Table 6.1 Notation . 134

Table 6.2 Computation overhead of different schemes on Pentium-4 3.0GHz PC

(p: 1024-bit, q: 256-bit, m=256, n=u=128 and t=5) 149

Table 6.3 Computation overhead of different schemes on MicaZ sensor node (p:

512-bit, q: 128-bit, m=16, n=u=8 and t=5) 151

www.manaraa.com

ix

LIST OF FIGURES

Figure 2.1 An example of linear network coding 27

Figure 3.1 A target field is partitioned into square or hexagon grids. l is the

distance between two neighbor grids. σ denotes the variance of normal

distribution of sensor nodes. A and B are two deployment points. C is

the tangent point of two circles of radius 3σ and each circle is centered

at a deployment point. 40

Figure 3.2 Different ways to assign B matrices, when the target field is partitioned

into hexagon grids. The basic groups are labeled in bold and italic

font. The compromised nodes are within the groups marked with a

small (blue) circle and the groups affected by the compromised nodes

are bounded by irregular (red) lines. In sub-figure (c), each group is

actually assigned seven B matrices, where six matrices come from its

neighbor groups and one is shown in the corresponding grid for the group. 47

Figure 3.3 A cluster of triangle, square or hexagon grids (or groups). A triangle,

square and hexagon grid have 12, 8 and 6 neighbors, respectively. . . . 51

Figure 3.4 Assignment of B matrices when a target field is partitioned into square

grids. The basic groups are labeled in bold and italic font. The com-

promised nodes are within the group marked with a small (blue) circle

and the affected groups are bounded by (red) lines. 52

www.manaraa.com

x

Figure 3.5 Computing the lowest node density within a circle area in polar coor-

dinate system. The circle area has a radius of R and is centered at the

intersection of three hexagon grids. The arrowed line is polar axis and

h denotes the radial coordinate of some point. 57

Figure 3.6 Computing the number of inter-group links compromised when a tar-

get field is partitioned into square or hexagon grids. A and C denote

compromised nodes. x is the distance between A and B. The arrowed

lines denote axes. Two arc areas and one quarter area are bounded by

thick (red) lines. 59

Figure 3.7 Local security: the fraction of links compromised as a function of nodes

compromised, when all of the compromised nodes are located in the

same group. “Our” is the short term of our scheme. “Sqr”/“Hex”

denotes Square/Hexagon grids. “Uni” means Uniform distribution. . . 64

Figure 3.8 Global security: the fraction of links compromised as a function of

nodes compromised, when the compromised nodes are distributed over

the whole network. “Du’s deployment” and “Du’s pairwise” are the

short term of Du’s deployment knowledge scheme and Du’s pairwise

key scheme. “Nor” means Normal distribution. 66

Figure 3.9 Global security: the fraction of links compromised as a function of grid

size, with 200 compromised nodes randomly distributed over the whole

network. In our scheme, we set M = 100. In the legend, the variants

of our scheme are listed in the decreasing order of the fraction. 69

Figure 3.10 Comparison between the number of matrices B broken and the total

number of matrices B for our method (b = 7, w = 7) as grid size

increases. Sensor nodes (including 200 compromised nodes) are de-

ployed into hexagon grids, and the compromised nodes are randomly

distributed over the whole network. 71

www.manaraa.com

xi

Figure 3.11 Connectivity of some variants of our scheme as a function of estima-

tion error, when sensor nodes are deployed into hexagon grids. In our

scheme, we set M = 100. 73

Figure 4.1 Sensor nodes are organized into clusters. The big dashed circles outline

the regions of clusters. CH and BS denote Cluster Head and Base Sta-

tion respectively. u1 ∼ u5 are forwarding nodes, and v1 ∼ v8 are sensing

nodes (they can also serve as forwarding nodes for other clusters). The

black dots represent the compromised nodes, which is located either

within the clusters or en-route. 78

Figure 4.2 The relationship between three phases of our scheme. Key pre-distribution

is preformed only once. Key dissemination is executed by clusters peri-

odically. Report forwarding happens at each forwarding node in every

round. 82

Figure 4.3 The detailed procedure of each phase. In the key pre-distribution phase,

each node is preloaded with l + 1 secret keys y1, · · · , yl, and z, and

generates a hash chain of auth-keys k1, · · · , km from the seed key km.

In the key dissemination phase, the cluster head disseminates the auth-

keys of all nodes through message K(n) to q downstream neighbor

nodes. Every downstream node may decrypt and obtain some auth-

keys from K(n), then, it forwards K(n) to q more downstream neighbor

nodes, which repeat the same decrypting and forwarding operations. In

the report forwarding phase, each forwarding node en-route performs the

following steps: (1) It receives the reports from its upstream node. (2)

If it receives confirmation message OK, then forwards the reports to its

next-hop node. Otherwise, it discards the reports. (3) It receives the

disclosed auth-keys within message K(t) and verifies the reports using

the disclosed keys. (4) It informs its next-hop node the verification result. 84

www.manaraa.com

xii

Figure 4.4 Key pre-distribution of Hill Climbing. Every node picks each of its y-

keys randomly from a distinct hash chain whose length is u = v
l , while

the z-key is still selected from the global key pool, instead of from a

hash chain. 88

Figure 4.5 Fraction of false reports being filtered as a function of the number of

hops that they traveled (In our scheme q = 2) 100

Figure 4.6 The average number of hops traveled by false reports as a function of

the size of memory for each node. (In our scheme, we set q = 2.) . . . 101

Figure 4.7 The average number of hops traveled by false reports as a function of

the maximum hops for key dissemination. (In our scheme, we set q = 2.)102

Figure 4.8 The average number of hops traveled by false reports as a function of the

network churn rate. (In our scheme, we set hmax = 10 and mem = 50.) 103

Figure 4.9 The fraction of the false reports that reach the base station as a function

of the network churn rate. (In our scheme, we set hmax = 10, mem = 50

and q = 2.) . 105

Figure 5.1 A general multicast network that adopts network coding. In this net-

work, a singe source s simultaneously transmits n messages M1, · · · ,Mn

to k sinks t1, · · · , tk through forwarders, which are represented by nodes

1 to 7. The encoded messages are denoted as E. 112

Figure 5.2 Comparison of computation efficiency among different schemes in terms

of verification time (per message). It shows that GR’s scheme, our

scheme and alternate scheme preform similarly in message verification. 125

Figure 6.1 Impact of u to Havg, where Hmax = 20, m = 256 and |K| = 100. 145

Figure 6.2 Impact of t to Havg, where Hmax = 20, m = 256 and |K| = 100. 145

Figure 6.3 Impact of |K| to Havg, where Hmax = 20, m = 256 and u = 128. 146

Figure 6.4 Impact of |K| to Havg, where Hmax = 20, m = 256 and u = 128. 147

www.manaraa.com

xiii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this dissertation.

First and foremost, I would like to thank my advisor Dr. Yong Guan for his support,

encouragement and an endless source of ideas. His breadth of knowledge, his enthusiasm for

research, and his vision for the future amaze and inspire me. I thank him for the countless

hours he has spent with me, discussing everything from research to career choices, reading

my papers, and guiding my studies. His direction during my time at ISU has been invaluable

— my life has been enriched professionally, intellectually, and personally by working with Dr.

Guan.

I am greatly thankful to my labmates, Yawen Wei and Bhuvaneswari Ramkumar, for their

collaboration during this research and contributions to this dissertation.

I would like to convey my appreciation sincerely to the committee members, Dr. Arun

Somani, Dr. Manimaran Govindarasu, Dr. Daji Qiao, and Dr. Johnny Wong, for their time

and input. I am also thankful to Dr. Lei Ying for his valuable discussions.

My deep gratitude goes to my wife (Dr. Min Xu), my son (Gavin Yu), and my parents

(Guojian Yu and Yuying Liu) for their love, sacrifice and support during my life.

www.manaraa.com

xiv

ABSTRACT

The implementation of ubiquitous computing (or pervasive computing) can leverage various

types of resource-constrained wireless networks such as wireless sensor networks and wireless

personal area networks. These resource-constrained wireless networks are vulnerable to many

malicious attacks that often cause leakage, alteration and destruction of critical information

due to the insecurity of wireless communication and the tampers of devices. Meanwhile, the

constraints of resources, the lack of centralized management, and the demands of mobility of

these networks often make traditional security mechanisms inefficient or infeasible. So, the

resource-constrained wireless networks pose new challenges for information assurance and call

for practical, efficient and effective solutions.

In this research, we focus on wireless sensor networks and aim at enhancing confidentiality,

authenticity, availability and integrity, for wireless sensor networks. Particularly, we identify

three important problems as our research targets: (1) key management for wireless sensor net-

works (for confidentiality), (2) filtering false data injection and DoS attacks in wireless sensor

networks (for authenticity and availability), and (3) secure network coding (for integrity).

We investigate a diversity of malicious attacks against wireless sensor networks and design

a number of practical schemes for establishing pairwise keys between sensor nodes, filtering

false data injection and DoS attacks, and securing network coding against pollution attacks

for wireless sensor networks. Our contributions from this research are fourfold: (1) We give

a taxonomy of malicious attacks for wireless sensor networks. (2) We design a group-based

key management scheme using deployment knowledge for wireless sensor networks to estab-

lish pair-wise keys between sensor nodes. (3) We propose an en-route scheme for filtering

false data injection and DoS attacks in wireless sensor networks. (4) We present two efficient

www.manaraa.com

xv

schemes for securing normal and XOR network coding against pollution attacks. Simulation

and experimental results show that our solutions outperform existing ones and are suitable for

resource-constrained wireless sensor networks in terms of computation overhead, communica-

tion cost, memory requirement, and so on.

www.manaraa.com

1

CHAPTER 1 OVERVIEW

1.1 Introduction

Ubiquitous computing [74] (or pervasive computing) integrates computing technology into

our day lives, embeds computing devices into our physical surroundings, and provides us the

ability of computing (or information processing) everywhere. The implementation of ubiqui-

tous computing can leverage the techniques such as wireless sensor networks [2, 3] and wireless

personal area networks [80]. We term these networks resource-constrained wireless networks,

which typically contain a lot of tiny wireless devices that are limited in power resource, com-

putation capacity, memory size and communication range.

The resource-constrained wireless networks suffer various malicious attacks, because wire-

less communication through the air is insecurely open to the public and the wireless devices

are not tamper-resistant. For instance, adversaries can easily eavesdrop on wireless commu-

nication to gain confidential information. They can interfere with wireless communication to

change or disrupt the transmitted information. Through compromises devices, the adversaries

can inject false information into networks, alter or drop the forwarded messages, or flood a

large number of messages to cause networks unavailable. These attacks lead to leakage, alter-

ation and destruction of critical information, and violate the basic requirement of information

assurance such as confidentiality, authenticity, availability and integrity.

Besides the property of resource-constrained, these networks are often distributed and lack

centralized management, while their wireless devices may even be mobile. Thus, many tradi-

tional security mechanisms supporting information assurance become inefficient or infeasible

for these networks. For example, public-key cryptography may not be suitable for these net-

works due to the high computation overhead and the lack of the desired infrastructure within

www.manaraa.com

2

the networks, while the mobility of wireless devices greatly increase the complexity of group key

manage. So, the resource-constrained wireless networks pose new challenges for information

assurance and call for more practical, efficient and effective solutions.

Among different types of resource-constrained wireless networks, wireless sensor networks

are the most popular one that has been widely used for various applications such as battlefield

surveillance, target tracking and traffic control. In this research, we focus on wireless sen-

sor networks and aim at enhancing confidentiality, authenticity, availability and integrity for

wireless sensor networks. Particularly, we identify three important problems as our research

targets:

1. Key management for wireless sensor networks (for confidentiality). Wireless communica-

tion between sensor nodes should be secured, which demands the efficient distribution of

secret keys. Key management provides not only the fundamental cryptographic services,

but also the basic component to construct other security mechanisms, hence, should be

carefully studied.

2. Filtering false data injection and DoS attacks in wireless sensor networks (for authenticity

and availability). For various applications to function correctly, it is important to make

sure that valid information can be delivered to desired destinations. However, false data

injection produces invalid information and DoS attacks disrupts information delivery. So,

they must be efficiently filtered.

3. Secure network coding (for integrity). Network coding [1, 50] is promising to maximize

network throughput and gains more and more applications in wireless networks. However,

it poses a lot of new security problems that have not been well addressed.

We investigate a diversity of malicious attacks against wireless sensor networks and design

a number of practical schemes for establishing pairwise keys between sensor nodes, filtering

false data injection and DoS attacks, and securing network coding against pollution attacks.

Our contributions from this research are as follows:

www.manaraa.com

3

1. We classify the malicious attacks into different categories and provide a taxonomy of

these attacks.

2. For enhancing confidentiality, we design a group-based key management scheme for wire-

less sensor networks to establish pair-wise keys between sensor nodes.

3. For enhancing authenticity and availability, we propose a dynamic en-route scheme for

filtering false data injection and DoS attacks in wireless sensor networks.

4. For enhancing integrity, we present two schemes for securing network coding against

pollution attacks, where one of our solutions is the first one addressing secure XOR

coding problem.

1.2 Resource-constrained Wireless Networks

1.2.1 Ubiquitous Computing

Mark Weiser, the Chief Technologist of Xerox Palo Alto Research Center, coined the term

Ubiquitous Computing [74] as ”Computers everywhere. Making many computers available

throughout the physical environment, while making them effectively invisible to the user.”

He also said that ”The most profound technologies are those that disappear. They weave

themselves into the fabric of everyday life until they are indistinguishable from it.”

Ubiquitous computing provides us the ability to process information everywhere. For ex-

ample, a person’s location can be automatically tracked by sensor networks (Active Badge [77])

so that the telephone calls or emails could be forwarded to the correct location, while a user

may use a handheld personal device (Xerox PARCTAB [82]) to gain access to other personal

devices, LAN or Internet. We envision that a lot of small, inexpensive, wireless devices such as

sensor nodes, mobile phones, PDAs and RFID tags, can be distributed at all scales throughout

everyday life and turned to distinctly quotidian ends to support ubiquitous computing. That

is, the implementation of ubiquitous computing can leverage the techniques such as wireless

sensor networks [2, 3] and wireless personal area networks [80].

www.manaraa.com

4

1.2.2 Wireless Sensor Networks

Akyildiz et al, [3] stated that ”Recent advances in micro-electro-mechanical systems (MEMS)

technology, wireless communications, and digital electronics have enabled the development of

low-cost, low-power, multifunctional sensor nodes that are small in size and communicate un-

tethered in short distances. These tiny sensor nodes, which consist of sensing, data processing,

and communicating components, leverage the idea of sensor networks based on collaborative

effort of a large number of nodes.”

The specifications of some types of sensor nodes can be found as follows:

Crossbow MICAz [55]:

• Microprocessor: Atmel ATmega 128L (8 MHz)

• Program Memory: 4K RAM

• External Memory: 128K Flash ROM

• RF Transceiver: 802.15.4/ZigBee compliant (2.4 GHz)

• Data Rate: 250 kbps

• Communication Range: 20-100 m

• Battery: 2× AA

• Weight: 0.7 oz

Crossbow TelosB [71]:

• Microprocessor: TI MSP430 (8 MHz)

• Program Memory: 10K RAM

• External Memory: 48K Flash ROM

• RF Transceiver: 802.15.4 compliant (2.4 GHz)

• Data Rate: 250 kbps

• Communication Range: 20-100 m

• Battery: 2× AA

• Weight: 0.8 oz

ETH Zurich BTnode [11]:

• Microprocessor: Atmel ATmega 128L (8 MHz)

• Program Memory: 64+128K RAM

• External Memory: 128K Flash ROM + 4K EEPROM

• RF Transceiver: Chipcon CC1000 (433-915 MHz) and Bluetooth (2.4 GHz)

• Battery: 2× AA

• Size: 58.15 x 33 mm attached to a 2× AA battery holder

www.manaraa.com

5

1.2.3 Wireless Personal Area Networks

A wireless personal area network (WPAN) is a personal, short distance area wireless net-

work for interconnecting devices centered around an individual person’s workspace. The initial

incarnation of ubiquitous computing was in the form of Tab [82], Pad [83], and Board built at

Xerox PARC, 1988-1994, while the Tab and Pad can be assumed as devices of WPAN.

The Tab was a prototype handheld computer, which was 2”×3”×0.5”, had a 2 week battery

life on rechargeable batteries, and weighed 7 oz. It used a Phillips 8051 processor with 128k

NVRAM. It featured an external I2C external bus, a custom resistive touch screen, and a

128×64 mono display. A complete Tab system included an infrared base station in the ceiling

for LAN connectivity.

The Pad was a prototype pen computer, which was 9”×11”×1”, had a four 4 hour battery

life, and weighed 5 oz. It used a Motorola 683×× processor with 4MB RAM running a unique

real-time operating system. The Pad featured a PCMCIA slot, an electronic pen of our own

design with a built-in microphone, a 640×480 4 level display, keyboard and serial ports. The

Pad could communicate through infrared at 19.2kbs, through a unique near field radio at

240kbs, and through a 1Mbs tether which also supplied external power for operation and

recharging. A complete Pad system also had a radio base station that served as a recharging

station and Ethernet gateway for the Pads.

1.2.4 Observations

From the specifications of sensor nodes, Tab and Pad, we conclude that they are typi-

cally tiny wireless devices with limited power resource, computation capacity, memory space,

data rate and communication range. Thus, we term the networks of these devices resource-

constrained wireless networks, because these devices are often wireless with limited resources.

We also observe that the resource-constrained wireless networks are typically distributed,

because a base station is unnecessary to be present during all the life time of the networks.

Thus, such networks may lack a centralized management. In addition, the mobility is often

demanded for the devices of these networks.

www.manaraa.com

6

1.3 Taxonomy of Malicious Attacks against Wireless Networks

Wireless networks are vulnerable to various malicious attacks. We list some possible attacks

as follows:

• Eavesdropping : The adversaries may obtain critical or sensitive information by eaves-

dropping on wireless communication.

• Eavesdropping : The adversaries may observe traffic flows to deduce information from

the patterns of wireless communication, even when the flows are encrypted and cannot

be decrypted.

• Removing/Moving : The adversaries may remove some wireless nodes or move them to

other locations to make the network partitioned or the topology changed,

• Jamming : The adversaries can broadcast a high-power signal to disrupt or interfere with

wireless communication.

• Replaying : The adversaries may replay the previously received messages to disturb the

functionalities of wireless networks.

• Wormhole: The adversaries can record the information received at one location and

replay them at another location via some wormhole tunnel, e.g., a fast wired link, which

fools the wireless nodes far from each other to believe they are neighbors.

• Dropping/Selective Forwarding : The adversaries may compromise some nodes, and drop

all or some of the messages that should be forwarded by those nodes.

• Flooding : The adversaries may inject a huge amount of useless information into wireless

networks via some compromised nodes to disrupt wireless communication and/or deplete

the energy of wireless nodes.

• Modification/Pollution: The adversaries can modify or corrupt the information trans-

mitted in wireless networks.

www.manaraa.com

7

• False Data Injection: The adversaries can inject false information into wireless networks

to disturb the functionalities of wireless networks and/or deplete the energy of wireless

nodes.

• Impersonating/Sybil Attack : A compromised node can impersonate another legal node

or claim the identities of multiple legal nodes.

We categorize these attacks into different ways and provide the following taxonomy. Careful

and thorough classification is important for correctly addressing these attacks.

• Attacks can be passive or active. Passive attacks do not generate new (malicious) infor-

mation or modify old information. They are hard to observe and hence may not be well

protected without careful design. For example, traffic analysis is a passive attack and

can not be protected using encryption mechanisms solely. Active attacks either produce

new (malicious) information and/or change old one. One example is flooding.

• The targets of malicious attacks may be different. Information, wireless node, or network

services are all possible targets. Identifying the targets of attacks is crucial to address

these attacks. For example, the target of eavesdropping is information that should be

encrypted, while that of impersonating attacks is wireless nodes that should be authen-

ticated.

• Attacks may occur at different protocol layers such as physical layer, MAC layer, network

layer, transport layer and application layer. This classification help us select security

mechanisms properly. For example, jamming is a physical layer attack that can be

addressed using advanced modulation techniques such as DSSS or FHSS, while sybil

attack works on application layer and can be countered using authentication approaches.

• Some attacks happen only when some special condition is satisfied. For example, drop-

ping attacks require some nodes compromised, but replaying attacks do not. So, making

nodes tamper-resistant can effectively deal with dropping attacks, but cannot prevent

replaying.

www.manaraa.com

8

• Attacks can be intermittent or persistent from the perspective of how long they last.

Persistent attacks last long, but intermittent ones happen and disappear very quickly. So

in most cases, intermittent attacks do not demand us to design specific countermeasures.

We note that some complicated attack may even consist of multiple attacks from different

categories. For example, a Blackhole attack [42] against routing protocols consists of a worm-

hole and a dropping attack, where the adversaries first create a wormhole to attract data from

victim nodes and then drop the data.

1.4 Information Assurance

National Information Assurance Glossary, Committee on National Security Systems (CNSS)

Instruction No. 4009 [21], defines Information Assurance as:

Measures that protect and defend information and information systems by ensuring their

availability, integrity, authentication, confidentiality, and non-repudiation. These measures

include providing for restoration of information systems by incorporating protection, detection,

and reaction capabilities.

Generally, we consider the following security goals of information assurance.

• Confidentiality : Confidential information cannot be disclosed to unauthorized users, pro-

cesses, or devices.

• Integrity : Information cannot be created, modified or deleted without proper authoriza-

tion.

• Availability : Information, the computing systems used to process the information, and

the security controls used to protect the information are all available and functioning

correctly when the information is needed.

• Authenticity : The identity of users, processes, or devices, and the source of information

can be correctly verified or is genuine.

www.manaraa.com

9

• Non-repudiation: The sender of information cannot deny having sent the information

and the receiver cannot deny having received it.

• Access control : The access to information is only granted to an authorized user.

• Privacy : A user is secure from unauthorized disclosure of information about oneself.

Among these goals, confidentiality, integrity and availability (known as CIA triad) are the

most important and core principles.

Although these security goals are suitable for any type of networking systems such as

Internet, WLAN and mobile ad-hoc networks, achieving these goals in resource-constrained

wireless networks pose new challenges. For example, the traditional approaches for achieving

authenticity based on public-key cryptography may be impractical for wireless sensor networks,

because (1) public-key algorithms are too expensive for sensor nodes due their high computation

requirement and energy consumption, and (2) the distributed wireless sensor networks might

not be able to provide the desire public-key infrastructure. Another example is that achieving

availability is difficult in wireless sensor networks, because sensor nodes are often failed or

temporarily unavailable due to power depletion or unexpected interference. Our research is

motivated by addressing these special challenges to enhance information assurance for resource-

constrained wireless networks.

1.5 Objectives of Research

Resource-constrained wireless networks are subject to malicious attacks and demand effi-

cient mechanisms for providing information assurance. In this research, we focus on wireless

sensor networks and aim to enhance confidentiality, integrity, availability and authenticity for

wireless sensor networks, because these are the core principles of information assurance. Par-

ticularly, we identify three problems as our research targets, which are: (1) key management for

wireless sensor networks (for confidentiality), (2) filtering false data injection and DoS attacks

in wireless sensor networks (for authenticity and availability), and (3) secure network coding

(for integrity).

www.manaraa.com

10

Wireless communication is prone to eavesdropping. In wireless sensor networks, distributing

secret keys among sensor nodes allows them to secure their communication with encryption.

Key management, including key generation, distribution, revocation and update, not only

provides the basic cryptographic service, but also are critical to implement other security

mechanisms. However, there are still a lot of unsolved problems in providing efficient key

management for wireless sensor networks. For example, sensor nodes may not have suffice

memory for key storage and cannot support heavy public-key algorithms. These problems

motivate us to study key management for wireless sensor networks.

Wireless sensor networks support various applications such as battlefield surveillance, target

tracking or traffic control, in which sensor nodes should report detected events or sensing

readings to the base station. However, the data reports are vulnerable to forging, modifying

and dropping and the adversaries can inject false data into networks. The forged reports

about battlefield may cause false alarms in the base station and the dropped reports might be

critical for traffic control. So, it is important to ensure that the information transmitted with

wireless sensor networks is valid, correct and available. Some solutions for filtering false data

injection are not efficient and robust for dynamic sensor networks, while few of them consider

DoS attacks simultaneously. Thus, we are inspired to address both attacks for wireless sensor

networks.

Network coding [1, 50] is a new forwarding technique that allows a forwarder to encode

its input messages for creating a output one. The advantages of network coding include (but

not limited to) (1) maximizing network throughput, (2) reducing the number of forwarding

messages, and (3) reducing the number of retransmissions. These nice properties make network

coding technique widely applied in peer-to-peer systems, wireless networks and sensor networks.

However, network coding poses new challenges to security. For example, because each forwarder

(including compromised ones) decides how to generate its output messages independently, it

is hard to detect if a message is a corrupted one or a valid one. Moreover, a smart adversary

can generate valid messages that are linearly dependent on other previously transmitted ones.

These valid messages are useless for decoding by receivers. Few research has been conducted

www.manaraa.com

11

on security issues in network coding. We identify secure network coding as a promising research

area that involves a diversity of problems, which have not been discovered and solved.

1.6 Contributions of Research

From this research, we make the following contributions.

1. We classify the malicious attacks into different categories and provide a taxonomy of

these attacks.

2. For enhancing confidentiality, we design a group-based key management scheme for wire-

less sensor networks to establish pair-wise keys between sensor nodes. Compared with

others, our scheme has a stronger resilience against node capture, while achieving higher

connectivity with lower memory cost and shorter transmission range.

3. For enhancing authenticity and availability, we propose a dynamic en-route scheme for

filtering false data injection and DoS attacks in wireless sensor networks. Compared with

others, our scheme offers higher filtering capacity with lower memory cost and can better

deal with dynamic topology of wireless sensor networks.

4. For enhancing integrity, we present two schemes for securing network coding against

pollution attacks, where one of our solutions is the first one addressing secure XOR

coding problem. Compared with others, our schemes do not need any extra security

channels and are two to three orders of magnitude faster. Hence, they are promising for

wireless sensor networks.

1.7 Dissertation Organization

The rest of this dissertation contains 6 chapters that are organized as follows: In chapter

2, we provide a review of literature for the three problems targeted in our research. In chapter

3, we study how to provide efficient key management for wireless sensor networks for enhanc-

ing confidentiality and design a group-based key pre-distribution scheme using deployment

www.manaraa.com

12

knowledge for establishing pair-wise keys between sensor nodes. In chapter 4, we consider how

to filter false data injection and DoS attacks in wireless sensor networks for enhancing au-

thenticity and availability simultaneously. We propose a dynamic en-route scheme that filters

false data injection and mitigates the impact of DoS attacks. In chapter 5 and 6, we research

how to secure network coding against pollution attacks for enhancing integrity. We present

a homomorphic signature scheme for securing normal network coding systems in chapter 5.

In chapter 6, we further propose an efficient solution that is specifically designed for securing

XOR network coding. In chapter 7, we summarize our research and discuss our future work.

www.manaraa.com

13

CHAPTER 2 REVIEW OF LITERATURE

2.1 Key Management for Wireless Sensor Networks

2.1.1 Introduction

Wireless sensor networks may be deployed in uncontrolled or even hostile environments and

hence are subject to various attacks. For example, an adversary can easily gain access to mis-

sion critical information by monitoring wireless communication among sensor nodes, or inject

false messages into the networks through some compromised nodes. Therefore, it is crucial to

deploy secret keys into wireless sensor networks to encrypt wireless communication or establish

authentication among sensor nodes. The challenge is how to efficiently generate, distribute and

maintain secret keys among sensor nodes. This problem is called key management problem for

wireless sensor networks and can be solved by carefully designed key management schemes.

In this work, we survey existing key management schemes for wireless sensor networks

and provide a taxonomy of them. Most of schemes deal with symmetric key management,

while a few of them discuss public key management. Since public key algorithms are generally

considered too expensive for the use in wireless sensor networks, we focus our discussion on

symmetric key management schemes. We divide these schemes into pairwise key, group key and

global key schemes depending on what kind of keys they distribute and manage, and category

them into probabilistic, deterministic and hybrid depending on how possible the keys can be

generated. We also classify these schemes depending on whether they exploit deployment

knowledge or not. In the rest of this section, we first introduce threat model and goals of key

management schemes, and then discuss the pairwise key schemes, the group key schemes and

a global key scheme.

www.manaraa.com

14

2.1.2 Threat Model and Goals

The adversaries can launch malicious attacks in passive and active modes. In passive mode,

they can eavesdrop wireless communications among sensor nodes to capture mission critical

or private information. In active mode, they may deploy their own malicious nodes or capture

some sensor nodes in the networks. Once some nodes are captured and compromised, all secret

keys or secret information stored in these nodes will be revealed and the adversaries may fully

control these nodes. Through these malicious nodes or compromised nodes, the adversaries can

inject false messages, and modify or drop the messages transmitted in the networks. Using the

secret keys obtained from the compromised nodes, the adversaries could eavesdrop additional

communications encrypted by these keys.

The purpose of key management for wireless sensor networks is to distribute and manage

the secret keys of sensor nodes to secure wireless communications among sensor nodes and

provide a basic mechanism for other security protocols. Specifically, key management schemes

are expected to achieve the following goals:

1. Connectivity : The deployed sensor networks should be highly connected. Here, we em-

phasis key connectivity, which means two nodes are only considered as connected when

two conditions are satisfied: (1) they are physical neighbors; and (2) they share at least

one secret key.

2. Resilience: The sensor networks should be resilient against node capture. That is, the

compromise of some secret keys (or secret information) would not reveal much informa-

tion of additional communications or links.

3. Efficiency : The designed schemes should be efficient for sensor nodes with limited mem-

ory, computation and communication capacity.

4. Scalability : The schemes should be able to support large-scale sensor networks.

These goals may be contradictive to each other. Hence, we should make tradeoffs among these

goals when designing key management schemes.

www.manaraa.com

15

2.1.3 Taxonomy of Key Management Schemes

In general, key management process involves three phases, key setup phase, key discovery

phase and key update phase. In key setup phase, secret keys or secret information are generated

and carefully preloaded into sensor nodes. In key discovery phase, the deployed sensor nodes

communicate with each other and exchange information to discover or generate secret keys.

Moreover, two neighbors may establish secret keys through other discovered secure path(s) if

they cannot find secret keys directly. In key update phase, compromised or obsolete keys are

revoked and new keys are distributed or generated. We notice that key update (or rekeying)

is a hard problem and has not been fully solved so far.

Key management schemes for wireless sensor networks can be classified into various cate-

gories. Table 2.1 provides a taxonomy of these schemes. First, depending on what kind of keys

the schemes deal with, we divide these schemes into three classes, pairwise key schemes, group

key schemes and global key schemes. These keys are used for encryption or authentication of

communications between a pair of nodes, among a group (or cluster) of nodes and over the

whole networks. We further classify the schemes into probabilistic, deterministic and hybrid,

depending on whether the keys can be established with some probability or deterministically.

Hybrid schemes apply some deterministic approach over a probabilistic one. Typically, we

assume key distribution process is secure before sensor nodes are deployed. However, some

researchers also suppose there exists a short security period even after the nodes are deployed

to target field, because they believe adversaries need at least such a short period of time to find

and compromise a sensor. Thus, we have two classes, pre-deployment and post-deployment

security schemes. Depending on whether using deployment knowledge for the design schemes,

we divide the schemes into two categories, with or without deployment knowledge. There

are other metrics to classify the schemes, for example, (1) what kind of secret information

is pre-loaded into sensors, secret key, key vector or polynomial; and (2) the pairwise key is

pre-distributed into sensors or dynamically generated after sensors are deployed. Due to page

limit, we do not discuss these classifications here.

www.manaraa.com

16

T
ab

le
2.

1
A

T
ax

on
om

y
of

K
ey

M
an

ag
em

en
t

Sc
he

m
es

fo
r

W
ir

el
es

s
Se

ns
or

N
et

w
or

ks

P
ai

rw
is

e
K

ey
G

ro
u

p
K

ey
G

lo
b

al
K

ey
P

ro
b

ab
il
is

ti
c

D
et

er
m

in
is

ti
c

H
y
b

ri
d

D
et

er
m

in
is

ti
c

D
et

er
m

in
is

ti
c

P
re

-d
ep

lo
y
m

en
t

P
os

t-
d

ep
lo

y
m

en
t

S
ec

u
ri

ty
S

ec
u

ri
ty

N
o

D
ep

lo
y
m

en
t

[2
5,

17
,

97
],

[8
],

[2
4,

96
]

[2
2,

51
]

[9
,

96
]

[6
3]

K
n

ow
le

d
ge

[6
6,

37
,

38
]

[9
,

18
]

D
ep

lo
y
m

en
t

[2
3,

52
],

[5
2,

88
],

K
n

ow
le

d
ge

[5
3,

36
]

[9
4,

95
]

www.manaraa.com

17

2.1.4 Pairwise Key Management Schemes

2.1.4.1 Probabilistic Schemes without Using Deployment Knowledge

Eschenauer and Gligor [25] proposed the first probabilistic key pre-distribution scheme,

called basic scheme. In key setup phase, each node is randomly preloaded with m keys from a

global key pool of size M . Hence, a pair of nodes can establish a secure link with probability

p = 1− (M−mm)
(Mm)

. From random graph theory, the desired probability Pc that the entire network

is connected can be achieved by choosing a proper p. The drawback of this scheme is that

a pairwise key may be used by multiple pair of nodes. Given x nodes compromised, the

adversaries can compromise an additional link with probability 1− (1− m
M)x.

To improve resilience, Chan et al. [17] extended the basic scheme to q-composite scheme,

which requires a pair to share at least q > 1 keys to establish a secure link. However, this

scheme sacrifices the achievable connectivity. Hence, the authors proposed random pairwise-

key scheme, which keeps the achievable connectivity when improving resilience. The idea is

tat for each node, a set of m nodes are randomly chosen, and a unique pairwise key is assigned

for this node and every node in the set. Since all pairwise keys are distinct, the scheme has a

perfect resilience against node capture, but the size of network is limited by m
p .

In the basic scheme, each node is preloaded with m keys and has to broadcast all m key

IDs to discover the shared key(s). Hwang et al. [37] proposed cluster grouping scheme to

reduce the communication overhead of sensor nodes. In this scheme, the keys stored by each

node are divided into c (c < m) equal-length clusters where each cluster has a start key ID.

The remaining key IDs within the cluster are implicitly known from the start key ID. Hence,

each node only needs to broadcast c start key IDs, instead of m key IDs. Zhu et al. [97]

presented a pairwise key scheme which can reduce not only the communication overhead and

but also the required storage. In this scheme, each sensor is assigned with a unique ID and a

pseudo-random function f , where its key IDs can be determined by executing f(ID). Thus,

each node only needs to broadcast its IDs to discover the shared key(s). Similarly, Ren et al.

[66] also proposed to use hash chains to construct the global key pool. Hence, for each chain

assigned to a node, the node only needs to store the corresponding generation key and the

www.manaraa.com

18

hash function. In addition, Hwang and Kim [38] revisited the basic scheme and its derivatives,

and proposed to reduce the number of keys stored by each node while still keeping a certain

probability of sharing a key between two nodes. The basic idea is that probability is sufficient

to guarantee the largest component, instead of the whole network, to be almost connected.

2.1.4.2 Deterministic Schemes

Blom [8] proposed a deterministic scheme to set up pairwise keys for a group of N nodes.

First, a key distribution center constructs a (t+1)×(t+1) symmetric matrix D and a (t+1)×n

public matrix G over a finite field, where (DG)T is called secret matrix. All pairwise keys of

these N nodes are stored in a symmetric matrix K = (DG)TG. Then, each node i is preloaded

with the i-th row of secret matrix and the i-th column of public matrix. After deployment, any

two nodes i and j can individually derive their pairwise key kij = kji by only exchanging their

columns. This scheme is called t-secure, that is, no additional key is revealed given that up

to t nodes are compromised. However, when more than t nodes are compromised, the whole

matrix is broken. Although we can improve the resilience of the scheme by increasing t, each

node has to store more amount of secret information, which is O(t).

Blundo [9] presented a polynomial-based key management scheme, which is a special case of

Blom’s scheme when matrix D is a Vandermonde matrix. The basic component of this scheme

is t-degree bivariate polynomial f(x, y) =
∑t

i=0

∑t
j=0 aijx

iyj over a finite filed, where we have

f(x, y) = f(y, x) by choosing aij = aji. Each node i is preloaded with a polynomial share

f(i, y). After deployment, any two nodes i and j can individually derive their pairwise key

f(i, j) = f(j, i) by evaluating their own share at the point of the peer’s IDs. Similar to Blom’s

scheme, Blundo’s scheme is also t-secure.

Chan and Perrig [18] introduced a deterministic scheme called Peer Intermediaries for Key

Establishment (PIKE), in which all N nodes are organized into a two-dimensional space and

each node has a unique coordinate (x, y), where x, y ∈ [0,
√
N − 1]. Each node shares unique

pairwise keys with 2(
√
N − 1) nodes that have the same x or y coordinate. If two nodes with

no common x or y coordinate, they need to choose an intermediate node that has common x

www.manaraa.com

19

or y coordinate with both of them to help them establish a pairwise key securely. The problem

of PIKE is its high communication overhead, because a node can only establish pairwise keys

with 2(
√
N − 1) nodes directly and needs to find multi-link path for any of other neighbors.

All deterministic schemes discussed above have a common assumption, that is, the adver-

saries can compromise sensor nodes as long as they are deployed. However, this assumption

might be too strong. Although sensor nodes are not tamper-resist, the adversaries need at

least some short period of time to find, break, and control a sensor node. We call that period

post-deployment security window. Based on this weak threat model, key management schemes

can be designed more efficiently and effectively. One solution is Localized Encryption and Au-

thentication Protocol (LEAP) proposed by Zhu et al. Each node i is first preloaded with an

initial key KI and a pseudo-random function f , which can determine the node’s master key

ki = fKI (i). Within the security window after deployment, two nodes i and j exchange their

IDs and can calculate the pairwise key Kij = fkj (i). At the end of security window, all nodes

remove KI from their memory, so the adversaries cannot calculate the pairwise keys of other

links, even when they compromise some nodes. With this scheme, node addition is also simple.

Each new node maintains KI within the period of security window after deployment and hence

it can calculate the pairwise keys with its neighbors. Moreover, Dutertre et al. [24] proposed

a similar solution with the same post-deployment security assumption.

2.1.4.3 Hybrid Schemes

Deterministic schemes such as Blom’s and Blundo’s ones provide perfect resilience as long

as the number of compromised nodes is below the threshold value. They can be applied over

probabilistic key pre-distribution schemes to further improve the resilience of these schemes.

Du et al. [22] combined the basic scheme and Blom’s scheme together and designed a multi-

space key pre-distribution scheme. First, one public matrix G and ω symmetric matrices Di

(where i = 1, ..., ω) are constructed. These matrices form ω spaces (Di, G). Then, each node

randomly selects τ spaces and stores the corresponding rows of spaces. After deployment, any

two nodes can establish a pairwise key if they happen to select the same space. This scheme

www.manaraa.com

20

has a similar threshold property as that of original Blom’s scheme, which is that no additional

links will be compromised given the number of compromised nodes less than a threshold value.

However, after that threshold value, the whole network will be quickly broken. Similarly, Liu

and Ning [51] proposed to use Blundo’s scheme to improve the security of the basic scheme. In

one approach, each node randomly selects a subset of polynomials from a pool and stores the

corresponding polynomial shares of the selected polynomials. In another approach, N nodes

are organized into m×m grids, where each node is assigned with a coordinate (i, j) and each

row i or column j of grids is associated with a polynomial f ci (x, y) or f rj (x, y). Each node then

is preloaded with the polynomial shares corresponding to its row and column polynomials.

Both approaches improve the resilience.

2.1.4.4 Probabilistic and Hybrid Schemes with Deployment Knowledge

Deployment knowledge is a priori information about the expected locations of sensor nodes

or the distribution of nodes’ location. It can tell us which sensor nodes are more likely to

become neighbors and which local area a sensor node is more likely to reside. With the help of

deployment knowledge, the schemes with better performance can be designed, because sensor

nodes do not need to establish pairwise keys with those far away from them.

Liu and Ning [52] proposed closest pairwise key scheme in which each node shares pairwise

keys with its c closest neighbors whose expected locations are closest to the node. In the

extension version of this scheme, each node A has a unique key KA. For node A and its c

closest neighbors B1, B2, ..., Bc, the pairwise keys are f(KBi |IDA), where f is a pseudo-random

function. Node A stores all c pairwise keys, while node Bi only stores its key KBi and f . This

scheme has good resilience and connectivity and it also reduces the memory requirement of

sensors. But its performance will be degraded with the growth of location error and it is hard

to estimate sensors’ expected locations accurately.

In [23], Du et al. first proposed the concept of deployment knowledge. They described a

group-based deployment model in which the target filed is divided into square grids and nodes

are categorized into groups. Each group of nodes pick their keys from a corresponding sub

www.manaraa.com

21

key pool and they are supposed to be deployed into a fixed grid. Sub key pools should be

carefully designed. Specifically, the sub key pool of one group overlaps with the pools of the

group’s two horizontally and vertically neighboring groups with ratio α and with the group’s

four diagonally neighboring groups with ratio β, where 0 < β < α < 1. Since neighboring key

pools overlap, the nodes from neighboring groups have higher probability to establish pairwise

keys than those nodes whose groups are far from each other. This scheme outperforms the

basic one in term of resilience. However, if smarter adversaries selectively compromise nodes

within the same group, the scheme cannot keep the same good performance in resilience. That

is, it cannot deal with selective node captures very well. In [53], the authors proposed a general

group-based key pre-distribution framework. In the framework, the nodes from the same group

establish pairwise keys using some existing approaches, while every group has an exact node

to form cross-groups which are used to bridge neighboring groups. Whenever two nodes from

different groups want to establish a pairwise key, they always need to exploit the bridging

nodes. Hence, one problem of the framework is that those bridging nodes may consume up

their energy earlier than other nodes. Huang et al. [36] introduced a location-aware key

management scheme which is similar to the framework proposed by Liu and Ning.

We have already discussed some schemes that use deterministic approaches to improve re-

silience of probabilistic schemes, and also introduced some schemes that exploit deployment

knowledge to improve the performance of schemes. Naturally, both deterministic approaches

and deployment knowledge can be combined together to facilitate the design of key manage-

ment schemes with better performance. Liu and Ning [52] integrated Blundo’s polynomial-

based technique with group-based deployment model and designed location-based key pre-

distribution using bivariate polynomials. First, a bivariate polynomial is assigned to each grid

of the target field. Then, for every node to be deployed into some grid, it is preloaded with the

polynomial shares of polynomials from its own grid and four directly neighboring grids (i.e.,

two horizontally and two vertically neighboring grids). This scheme can easily achieve high

connectivity with good resilience.

Similarly, Yu and Guan [88] depicted an approach to combine Blom’s scheme with group-

www.manaraa.com

22

based deployment model. There are two significant differences between Yu’s approach and

other schemes. First, the authors divided the target field into hexagon grids, instead of square

grids. Since hexagon grids are symmetric and have less neighboring grids, this scheme can

achieve high connectivity with more efficient use of memory. Second, the authors proposed to

use geometric random graph [61], instead of (Bernoulli) random graph, to model wireless sensor

networks. The reason is that geometric random graph takes into consideration of the limited

communication range of sensor nodes, but (Bernoulli) random graph does not. In addition,

Zhou et al. [94, 95] discussed how to incorporate Blundo’s polynomial-based technique and

group-based deployment model with hexagon and triangle grids.

2.1.5 Group Key Management Schemes

Based on established pairwise keys, establishing a group key becomes straightforward. As

depicted by Zhu et al. in [96], one node can directly send a group key to its neighbors through

the links secured with pairwise keys.

Another approach is to exploit the pre-distributed polynomial shares of sensor nodes to gen-

erate a common group key. Blundo [9] proposed two models. The first model is non-interactive,

where users compute a common key without any interaction. A random symmetric polynomial

f(x1, · · · , xt) with t variables of degree λ is selected initially, where the coefficients come from a

finite field GF (q). Each user i receives share f(i, x2, · · · , xt). Users j1, · · · , jt can generate the

conference key Kj1,··· ,jt by evaluating their polynomial shares. That is, each user ji can obtain

the conference key Kj1,··· ,jt independently by evaluating f(ji, j1, · · · , ji−1, ji+1, · · · , jt). In the

second model, interactions are allowed in key computation. A symmetric polynomial f(x, y)

of degree (λ+ t− 2) is selected initially. Each user i receives share f(i, y). Users j1, · · · , jt can

establish the conference key K as follows: (1) the user with the largest identity, that is, user

jt, selects a random key K, (2) jt calculates Kjt,jl = f(jt, jl) for each l = 1, · · · , t − 1, (3) jt

sends xl = Kjt,jl ⊕K to each jl, and (4) each jl generates Kjl,jt = fjl(jt) = Kjt,jl , and derives

the secret K = xl ⊕Kjl,jt . User jt performs (t− 1) polynomial evaluations, and sends (t− 1)

messages which carry a single x value to establish the group key.

www.manaraa.com

23

2.1.6 Global Key Management Scheme

Perrig et al. [63] proposed µTESLA for authenticated broadcast and global key update. It

requires the base station and sensor nodes to be loosely time synchronized. First, base station

picks the last key Kn of a chain and generates the rest keys K0,K1, · · · ,Kn−1 of the chain

using a one-way hash function H such that Ki = Ki+1. Given Ki, each node can generate the

sequence K0,K1, · · · ,Ki−1, but not Ki+1, · · · ,Kn. At i-th time slot, base station broadcasts

message M along with its message authentication code MACKi(M). Sensors need to store

this message until base station discloses the authentication key Ki at (i + 1)-th time slot.

This is called delayed disclosure. Receiving (i + 1)-th message, sensor nodes can verify the

disclosed authentication key Ki by using the previous disclosed key Ki−1 as Ki−1 = Ki. This

scheme requires sensor nodes to store a message until the authentication key disclosed. This

brings communication delay, causes storage problem and may be exploited by the adversaries

to launch DoS attacks. For example, the adversaries may jam key disclosure messages to

saturate sensor nodes’ storage.

2.2 Filtering False Data Injection and DoS Attacks in Wireless Sensor Net-

works

2.2.1 Introduction

Sensor nodes are not tamper-resistant, hence, the adversaries can easily compromise some

nodes and launch various attacks through the compromised nodes. They can inject false data

into the networks. These attacks not only cause false alarms in the base station, but also

consume up the limited energy of forwarding nodes. Moreover, the adversaries can launch

DoS attacks by selectively dropping some forwarding data, or intentionally contaminating

the authentication information of data to make it dropped by other benign nodes if some

authentication mechanisms are enforced.

False data injection is a violation of data authenticity and the DoS attacks cause data

communication unavailable in wireless sensor networks. So, it is important to filter false data

www.manaraa.com

24

injection and DoS attacks in wireless sensor networks. The desired solutions should drop the

false data as soon as possible, while still being efficient for wireless sensor networks in terms

of communication overhead, memory cost and energy consumption.

In this work, we investigate existing solutions for filtering false data injection in wireless

sensor networks and provide a survey of these solutions in the rest of the section. Most of

these solutions do not consider DoS attacks. We also note that some of solutions assume a

fixed path between some sensor nodes and the base station. We believe that this assumption

is not appropriate for wireless sensor networks, because the topology of sensor networks may

be changed frequently due to node failures or node changing their mode between active and

sleeping ones.

2.2.2 Survey of Existing Solutions

Ye et al. proposed a statistical en-route filtering (SEF) scheme [86] based on probabilistic

key distribution. In SEF, a global key pool is divided into n partitions, each containing m keys.

Every node randomly picks k keys from one partition. When some event occurs, each sensing

node (that detects this event) attaches to each report a MAC that is produced using one

random key. The cluster head guarantees that a legitimate report contain T MACs generated

using the keys from different partitions. Given that no more than T−1 nodes are compromised

in the network, each node can detect a false report with probability proportional to 1
n . The

filtering capacity of SEF is independent of the network topology, but is constrained by the

value of n. To increase the filtering capacity, we need a smaller value of n, which however

makes it possible to break all partitions. In addition, since the keys are shared by multiple

nodes, the compromised nodes can report forged or non-existent events that “occurs” within

any clusters.

Zhu et al. designed an interleaved hop-by-hop authentication (IHA) scheme [98]. In this

scheme, the base station periodically initiates an association process to make each node estab-

lish pairwise keys with others that are t+1 hops away, where t is a security threshold. In IHA,

each sensing node generates a MAC using its multi-hop pairwise key, and a legitimate report

www.manaraa.com

25

should contain t + 1 distinct MACs. Since each multi-hop pairwise key is distinct, IHA can

tolerate up to t compromised nodes in each cluster, instead of in the whole network as SEF.

However, IHA requires the existence of a fixed path for transmitting control messages between

the base station and every cluster head, which cannot be guaranteed when the network adopts

some routing protocols such as GPSR [43] and GEAR [87]. In addition, the high communica-

tion overhead incurred by the association process makes IHA unsuitable for the sensor network

whose topology is highly dynamic.

Yang et al. presented a commutative cipher based en-route filtering (CCEF) scheme [86].

In CCEF, each node is preloaded with a distinct authentication key. When a report is needed,

the base station sends a session key to the cluster head and a witness key to every forwarding

node along the path from itself to the cluster head. The report is appended with multiple

MACs generated by sensing nodes and one generated by the cluster head using the session key.

When the report is delivered to the base station along the same path, each forwarding node

can verify the cluster head’s MAC using the witness key. The MACs generated by sensing

nodes are only verified by the base station. CCEE has several drawbacks. First, it has the

same requirement for fixed paths as IHA. Second, it relies on expensive public-key algorithms

to implement commutative ciphers. Third, it can only filter the false reports generated by

a malicious node without the session key, excluding those generated by compromised cluster

head or other sensing nodes.

Yang et al. further proposed a location based resilient security (LBRS) solution [85]. In

LBRS, a sensor field is divided into square cells and each cell is associated with some cell keys

that are determined from the cell’s location. Each node stores two types of cell keys. One type

contains the keys bounded to its sensing cells for authenticating its sensing reports. The other

type contains the keys of some randomly chosen remote cells, which are very likely to forward

their reports through the residing cell of the node. The authors define several types of report

disruption attacks, in which the adversaries intentionally attach invalid MACs to reports to

make them dropped by others. However, no concrete solutions are given in detail. In addition,

LBRS suffers a severe drawback: It requires a short secure time slot within which all nodes

www.manaraa.com

26

can safely determine their locations and generate location-based keys. However, to the best

of our knowledge, most practical sensor localization approaches [12, 33, 58] cannot be finished

in such a short time slot, and the localization process itself is vulnerable to various attacks

[14, 48, 49].

Recently, Ren et al. proposed a location-aware end-to-end data security (LEDS) scheme

[66], which addresses both false report injection and some DoS attacks. Like LBRS, LEDS

assumes that sensor nodes can generate location-based keys bounded to cells within a secure

short time slot. LEDS provides end-to-end security by making sensing nodes encrypt their

messages using cell key. A legitimate report contains T distinct shares produced from the

encrypted message using nodes’ secret keys, where the base station can always recover the

original message from any t (t < T) valid shares. In LEDS, reports are forwarded through

cells along report-auth route. Each node stores the authentication keys shared between its

cell and others in its downstream report-auth area and on report-auth route. Each report

contain T + 1 MACs generated by sensing nodes using authentication keys shared with the

cells on report-auth route, and each forwarding node updates the MACs in the reports using

its own authentication key. This process is similar to that in IHA. LEDS mitigates the impact

of report disruption attacks by allowing t invalid MACs in reports, which invites adversaries

to send false reports with less than t valid shares. In addition, LEDS addresses selective

forwarding attacks by letting the whole cell of nodes to forward reports, which incurs high

communication overhead.

2.3 Secure Network Coding

2.3.1 Introduction

2.3.1.1 Network Coding

Network coding [1, 50] is a new message forwarding technique that allows a forwarder

to encode multiple input messages together to form an output one. Unlike the traditional

approach that always duplicates every forwarding message, network coding is able to maximize

www.manaraa.com

27

the throughput of multicast networks. In 2003, Li et al. [50] further proved that linear network

coding is sufficient to achieve the optimal throughput, which is the minimum of the max-flows

from the single source to sinks. Because of this nice property, network coding has been widely

used not only in wired networks [20, 29], but also in wireless networks [7, 16, 45, 46, 62, 67].

Figure 2.1 illustrates an example multicast network with linear network coding. In this

network, source s can simultaneously send messages M1 and M2 to both sinks t1 and t2

through forwarders 1 to 4, as long as linear network coding is allowed at node 3. In this

M1+M2 M1+M2

M1+M2

M2 M1

M2 M1

3

1 2

4
t1 t2

M1

s

M2

Figure 2.1 An example of linear network coding

example, the output message of node 3 is encoded as M1 +M2. In fact, other coding functions

such as aM1 +bM2 and M1⊕M2 are also feasible, where a and b are two integer coefficients and

⊕ denotes exclusive OR (XOR). When a sink receives sufficient number of encoded messages,

it can recover source messages by decoding, which is just solving a number of linear equations.

Without network coding, node 3 has to transmit M1 and M2 separately, which not only

increases the number of forwarding messages, but also lowers throughput, that is, two sinks

cannot receive (and recover) both source messages simultaneously. We define encoding vector

as a sequence of coefficients used to generate an encoded message. For example, the encoding

vector of encoded message M1 +M2 is (1, 1), while that of aM1 + bM2 is (a, b).

www.manaraa.com

28

2.3.1.2 Secure Network Coding

The research on ”secure network coding” studies how to make network coding systems

secure in the presence of various malicious attacks that are generally classified into passive

ones and active ones. Precisely speaking, current research of secure network coding focuses on

wiretapping attacks (out of passive ones) and pollution attacks (out of active ones).

In wiretapping attacks, the adversaries are assumed to be able to wiretap or eavesdrop on

a subset of all the links of some network coding system and gain access to the information

transmitted through the links. The problem is how to prevent the source information from

leaking to the adversaries without using cryptographic mechanisms such as encryption. The

basic idea to solve the problem is to introduce some random information into source messages

and make the transmitted messages through the links ”randomized”. Several solutions based

on this idea have been proposed and they mainly focus on how to transfer an existing feasible

network coding scheme into a secure one and under what the condition that such a secure

scheme exists.

We categorize these solutions into two classes, Shannon-secure ones and weakly-secure ones.

Simply speaking, the difference between these two classes is that Shannon-secure does not allow

the leakage of any information about the source, while weakly-secure disallows the leakage of

any meaningful information. For instance, given two source messages M1 and M2, weakly-

secure allows the adversaries to gain M1 + M2, because this information is not meaningful.

However, Shannon-secure does not permit such leakage.

In pollution attacks, the adversaries may compromise some forwarders and modify (or

pollute) their output messages. Pollution attacks not only prevent the sinks from recovering

the source messages correctly, but also consume up the limited energy of the forwarders, which

is especially harmful to resource-constrained wireless networks. Filtering pollution attacks is

challenging in network coding systems, because traditional hashing or signature mechanisms

no longer work. With traditional mechanisms, the source generates the hashes or signatures

for all messages, which can be utilized by others to verify these messages. However, in network

coding systems, the encoded messages are generated by the forwarders themselves and the

www.manaraa.com

29

source does not know how to produce the hashes or signatures for these encoded messages.

We classify the existing solutions for securing network coding against pollution attacks

into two categories depending on whether the pollution attacks (or polluted messages) are

filtered by the forwarders or only the sinks. Basically, the solutions of the first category

utilize some homomorphic function and allow the forwarders to generate and verify the hashes

or signatures of encoded messages without contacting the source. Similarly, the solutions of

the second category create some error correction information for the source messages. This

information is either appended to the source messages or sent to the sinks in advance, and

will be used by the sinks to detect or filter polluted messages. Compared with those of the

second category, the solutions of the first category save energy of the forwarders by filtering

polluted messages as early as possible, however, they are typically much slower due to the

heavy public-key operations for generating and verifying the hashes or signatures

2.3.2 Solutions to Wiretapping Attacks

2.3.2.1 Models and Goal

A network coding system can be represented by a tuple (G, α,U). In the tuple, G = (V,E)

is a directed acyclic graph, and V and E are the set of nodes and edges of G. The capacity

of each edge e ∈ E denotes the maximum average rate of information that can be transmitted

on this edge. α is the single source that generates and sends out a message vector X =

(x1, x2, · · · , xn)T ∈ Fnq every time unit. U is the set of users (can be more than one) that

receive and recover the multicast information. In linear coding systems, the message (symbol)

on any outgoing edge of a node is a linear combination of the messages (symbols) on its incoming

edges, thus, the message (symbol) on any edge is eventually a linear combination of the source

messages (symbols). We denote the message (symbol) transmitted on edge e by TeX, where Te,

named the global encoding vector on edge e, is a row vector over Fq. (Note: When we discuss

the solutions to wiretapping attacks, we may use message and symbol interchangeablly.)

In wiretapping attacks, adversaries can wiretap or eavesdrop on any of a collection of sets of

edges, where the collection is denoted as A = {A1, A2, · · · , A|A|} and |A| denotes the number

www.manaraa.com

30

of sets in the collection. Each Ai is a subset of all edges in the network. It is assumed that

an eavesdropper can access any member but no more than one member of A. Let Mi denote

an eavesdropping matrix of dimension ki × n for each Ai, where ki is the maximum number

of linearly independent encoding vectors of the edges in Ai. All the eavesdropping matrixes

corresponding to A = {A1, · · · , A|A|} are M = {M1, · · · ,M|A|}. Hence, the information

available to the eavesdropper is a set of linear equations MiX = Bi for any Mi ∈ M. Some

other model also assumes that the eavesdropper has access to at most k edges of the network.

This is actually a special case of the first model in which the collection A contains all non-empty

subsets of at most k edges of all the edges in the graph.

Suppose a feasible network coding solution already exists that enables the source to mul-

ticast the message vector X = (x1, x2, · · ·xn)T to all receivers. The goal is to transform this

insecure coding solution into a secure one that allows no information leakage to the eaves-

dropper. The solutions can be Shannon-secure and weakly-secure [6] depending on the extend

to which the system can tolerate information leakage. Shannon-secure requires that for all

i ∈ {1, · · · , |A|}, the eavesdropper gains no information about the source. However, weakly-

secure requires that the eavesdropper receives no meaningful information about the source. For

example, if the eavesdropper knows the sum of x1 + x2, where x1 and x2 are i.i.d. information

symbols generated at the source, then she gets some information about the combinations of

the source symbols, but no meaningful information about the value of either x1 or x2 alone.

The system is weakly-secure but not Shannon-secure.

2.3.2.2 Shannon-secure Network Coding Schemes

Cai & Yeung [13] studied the problem of how to make a linear network coding system

to transmit information ”securely” in the presence of a wiretapper(or eavesdropper) who can

eavesdrop on a bounded number of network links. They gave the definition of secure (i.e.,

Shannon-secure) network code, proposed a method to transform a given linear network code

into a secure one, and presented the sufficient condition that guarantees the existence of such

a secure transformation.

www.manaraa.com

31

The basic idea of Cai & Yeung’s method is to insert some random symbols into the message

vector sent by the source, such that the symbols transmitted on all edges are “randomized”, i.e.,

are the combination of the information symbols and the random symbols. More specifically,

the input vector at the source is divided into two portions, the first r = n − k symbols

are information symbols and the remaining k = max{ki} symbols are random symbols chosen

uniformly from Fq, i.e., X = (S,W) = ((s1, · · · , sr)T , (w1, · · · , wk)T). When properly designed,

a linear network code is ”secure”, i.e., the eavesdropper cannot eliminate the randomness or

learn any combinations of solely the information symbols.

Definition of security: The secure network code defined by Cai & Yeung is Shannon-secure,

that is,

H(S|MiX = Bi) = H(S), ∀Mi ∈M . (2.1)

This definition is equivalent to that the eavesdropper cannot learn any linear combinations of

the first r information symbols, namely, ∀(t1, t2, · · · , tki) 6= 0 and ∀(β1, β2, · · · , βr) 6= 0,

(t1, t2, · · · , tki)MiX 6= (β1, β2, · · · , βr, 0 · · · 0)X . (2.2)

Cai and Yeung also proved that a network code is secure, if ∀Bi ∈ F kiq and ∀S ∈ F rq , there

exists

|C(Bi)
∗⋂

(S)| = qk−ki , (2.3)

where C(Bi) = {X ∈ Fnq : MiX = Bi}, ∀b ∈ Fnq and C∗(S) = {X ∈ Fnq : X = (S,W)},∀S ∈

F rq .

Transformation matrix: Let C denote an n × n secure transformation matrix. Cai &

Yeung’s method is to apply this matrix to an insecure network code and transform it into

a secure one. More specifically, for any edge e ∈ E of encoding vector Te, the transformed

encoding vector is T ′e = TeC. Thus, the symbol transmitted on edge e becomes T ′eX = TeCX.

The properties that matrix C should satisfy such that the transformed network code is both

feasible and secure, are given as follows:

Theorem 1 The matrix C is full-rank i.f.f. the transformed network code is feasible, i.e., all

receivers can recover the information symbols S = (x1, · · · , xr)T .

www.manaraa.com

32

Theorem 2 The first r row vectors of matrix C−1 and all row vectors of matrix Mi are

linearly independent i.f.f. the transformed network code is secure.

Lower bound: To guarantee the existence of a secure transformation matrix C, the larger

field size is required. Cai & Yeung proved that a lower bound of q > |A| is sufficient (but not

necessary).

Feldman et al. [26] generalized and simplified Cai & Yeung’s method, and showed that

making a linear network code secure is equivalent to finding a code with certain generalized

distance properties. They also presented a necessary (but not sufficient) condition that guar-

antees the existence of a secure transformation.

Definition of security: Feldman et al. defined that a secure network code should satisfy

that ∀Bi ∈ F kiq and ∀S, S′ ∈ F rq ,

|R(S,Bi)| = |R(S′, Bi)| , (2.4)

where R(S,Bi) = {W ∈ F kq : Mi(S,W) = Bi},∀S ∈ F rq . R(S,Bi) is the set of all possible ran-

dom vectors W , such that when message vector X = (S,W) is sent, the observed information

on the linearly independent edges in Ai is Bi. This definition shows that when W is chosen

randomly, whatever information Bi that an eavesdropper observes gives no information about

the transmitted S.

Transformation matrix: Unlike Cai & Yeung, Feldman applied the transformation matrix

C to the message vector sent by the source, while keeping the code unchanged. Thus, the

message vector sent by the source is X ′ = CX. For any edge e ∈ E of encoding vector Te, the

symbol transmitted on edge e becomes TeX ′ = TeCX. This transformation is equivalent in

power to that of Cai & Yeung, but it is simpler because it does not need to change the code.

Feldman et al. also proved that finding a secure transformation matrix is equivalent to

solving some generalized coding problem. Let N be the number of all edges in the network.

Let ZG be an n×N matrix whose columns are the encoding vectors of all edges in the graph

G. Since ZG has rank n (i.e., the message vector can be decoded by the receivers), thus the

null space of ZG has rank N − n, which can be generated by an (N − n)×N matrix Z ′G.

www.manaraa.com

33

Theorem 3 Given an (N − n)×N matrix Z ′G, a r×N matrix F that satisfies the Hamming

distance δ(Z ′G, F) > n− r exists i.f.f. an n× n secure transformation matrix C exists.

Based on this theorem, the existence of matrix C is equivalent to the existence of matrix

F , while finding the latter one is a generalized coding problem, i.e., Span Distance Problem.

When solving the Span Distance Problem, the following result can be derived:

Theorem 4 If n = logN
log q −

log Volq(d,N)
log q + 2 logN + log q+ log ln q and d ≤ n− r, then there is

an (N − n)×N matrix Z ′G, such that for any r ×N matrix F , the Hamming distance

δ(Z ′G, F) > n− r cannot be satisfied.

Volq(d,N) denotes the number of vectors in a ball of radius d around x, where given x ∈ FNq ,

the ball is the set of all vectors in FNq which differ from x in at most d coordinates. In this

theorem, let q = N
Ω(
√

n−r
logN

). It can be seen that as long as r takes any value within the range

r < (NΩ(
√

n−r
logN

) − 3) logN , the inequality d ≤ n− r is held.

Lower bound: Based on Theorem 3 and Theorem 4, the necessary lower bound of field size,

i.e., q > N
Ω(
√

n−r
logN

), can be obtained for the existence of a secure transformation matrix C.

2.3.2.3 Weakly-secure Network Coding Schemes

Bhattad & Narayanan [6] observed that the security requirement [13] can be relaxed in prac-

tice. They believe that it is suffice if no meaningful information is leaked to the eavesdropper.

For example, a network code is secure if the eavesdropper only get x1 + x2, but is unaware

of x1 and x2, where x1 and x2 are two information symbols sent by the source. They defined

a weakly-secure model, proposed a secure transformation to convert an insecure code into a

secure one, and proved the sufficient condition for the existence of a secure transformation.

Definition of security: They defined that a weakly-secure network code should satisfy,

H(xj |MiX = Bi) = H(xj) ∀xj ∈ X . (2.5)

Transformation matrix: Unlike the Shannon-secure code, a weakly-secure code does not

require any random symbols inserted into the message vector. A secure transformation matrix

C can be applied either to the message vector sent from the source or to the encoding vectors

www.manaraa.com

34

of all edges. After transformation, the message available to the eavesdropper is M ′iX = MiCX

for all Mi ∈M.

Theorem 5 The matrix C is full-rank iff the transformed coding solution is feasible; any row

vector of the matrix C−1 and all row vectors of matrix Mi are linearly independent i.f.f. the

transformed encoding solutions is weak-secure.

Lower bound: Bhattad & Narayanan proved that if qn > |A|qk + qn−1, then the secure

transformation matrix C must exist.

2.3.3 Solutions to Pollution Attacks

2.3.3.1 Filtering Pollution Attacks by Forwarders

Krohn et al. [47] proposed using a homomorphic hash function to verify the check blocks

of a downloaded file in peer-to-peer systems, where the check blocks are linear combinations of

original file blocks. Gkantsidis and Rodriguez [30] extended Krohn’s approach and presented

a homomorphic hashing scheme (called GR’s scheme for short) for securing peer-to-peer file

distribution systems with network coding against pollution attacks. Assuming multiple users

want to download a file that is divided into n blocks b1, b2, · · · , bn. The source (and the

system) transmits these blocks with linear network coding, that is, each forwarder transmits

some encoded block e =
∑n

i=1 cibi mod q, where (c1, c2, · · · , cn) denotes the encoding vector

and q is a prime. With a homomorphic hash function, the hash of this encoded block can be

represented as h(e) =
∏n
i=1 h

ci(bi) mod p, where p is another prime. Hence, if a downstream

node obtains the source blocks’ hashes in advance, it is able to verify the encoded block e.

However, GR’s scheme has a severe drawback, i.e., it needs some extra secure channels for

the source to transmit all of its hashes to the forwarders and sinks before sending the source

blocks. Unfortunately, such secure channels do not exist in most networks. Otherwise, if we

can find such a secure channel, we can directly send all the source blocks to the sinks and

easily solve the pollution attack problem. So, the requirement of extra secure channels makes

GR’s scheme inapplicable or impractical in most cases. In addition, GR’s scheme is based on

heavy modular exponentiations and hence inefficient for wireless sensor networks.

www.manaraa.com

35

Charles, Jain and Lauter [19] designed a new homomorphic signature scheme (called CJL’s

scheme for short) based on Weil pairing [54, 56] over elliptic curves. CJL’s scheme utilizes a

”linear” signature function based on some torsion points over elliptic curves, while the signature

of an encoded message covers the contents of the message and the corresponding encoding

vector. This allows forwarders to calculate the signatures of their encoded messages without

contacting the source. Hence, CJL’s scheme does not need any secure channels and can even

provide source authentication. The main disadvantage of CJL’s scheme is that its underlying

pairing operations are extremely time-consuming. So, it is too slow to be used in wireless

sensor networks.

Zhao et al. [93] studied the content distribution applications adopting network coding

and proposed a signature scheme (called Zhao’s scheme) that allows the forwarders to filter

pollution attacks. They divided a source file into multiple vectors that span a subspace. In

their scheme, the source calculates a signature of the spanned subspace, then broadcasts it to

all the forwarders for them to verify if a received encoded vector is in that subspace or not.

To verify one vector, a forwarder should calculate m + n modular exponentiations, which is

the same as GR’s scheme, where m is the length of each vector and n is the total number of

source vectors. The authors claimed that their approach does not need extra secure channels.

However, the public keys and the signature used in Zhao’s scheme are both related to the

downloaded file. In the case that a lot of files should be downloaded continuously from the

source, this scheme still requires secure channels to update the public keys or signature to all

forwarders.

2.3.3.2 Filtering Pollution Attacks by Sinks

Ho et al. [35] studied Byzantine modification attacks in multicast networks and illustrated

how randomized network coding can be utilized to detect these attacks without the use of

cryptographic functions. In Ho’s scheme, the source attaches each packet with a hash calculated

from a polynomial hash function. If Byzantine modification attacks (i.e., pollution attacks)

exist, a sink can detect inconsistency between the packets and corresponding hashes with a high

www.manaraa.com

36

probability, as long as the sink receives some unmodified packet whose content is unknown to

the adversaries. The detection probability can be traded off against communication overhead

and the number of unmodified packets. Ho’s scheme is computationally efficient for the use of a

simple polynomial hash function. However, it only allows the sinks, instead of the forwarders,

to detect modification attacks. Hence, it cannot reduce the amount of energy consumed by the

forwarders for transmitting the useless polluted packets. In addition, it can only detect (but

not filter) polluted packets. So, it cannot help the sinks recover the source packets correctly,

given that some polluted packets are detected.

Jaggi et al. [39] discussed how to build resilient network coding in the presence of Byzantine

adversaries. Their idea is to append the source messages with extra parity information that

can be used by the sinks to correctly recover the source messages even suffering Byzantine

attacks. The tradeoff is the sacrifice of data transmission rate. They analyzed the optimal rate

that network coding can achieve under different threat models and proposed some polynomial

time algorithms to attain these optimal rates. Suppose the network capacity is C. When the

adversaries can eavesdrop on all links and jam zo links, their algorithm can achieve a rate of

C − 2zo. However, when the adversaries have limited snooping capabilities, their algorithm

can achieve a higher rate of C − zo. Similar to Ho’s scheme, Jaggi’s algorithms filter pollution

attacks only by the sinks, so they cannot reduce the energy consumption of the forwarders for

forwarding polluted information and are not efficient for wireless sensor networks.

www.manaraa.com

37

CHAPTER 3 ENHANCING CONFIDENTIALITY: Providing Key

Management for Wireless Sensor Networks

3.1 Introduction

Wireless sensor networks may consist of a large number of battery-powered sensor nodes,

which are equipped with short-range radio, and only have constrained computation capability

as well as limited memory space. These sensor networks pose security and privacy challenges

when deployed in a hostile environment. For example, an adversary can easily gain access to

mission critical or private information by eavesdropping on wireless communications among

sensor nodes. Therefore, it is important to encrypt the wireless communication. However, as

Chan et al. stated in [17], the challenge is how to bootstrap secure communications among

sensor nodes, that is, how to set up secret keys among sensor nodes to allow them to establish

secure links between each other.

Some general key distribution and management approaches are not suitable for wireless

sensor networks. Firstly, trivially storing in each node a pairwise key for every other node poses

a high memory requirement unaffordable for sensor nodes. Secondly, online key distribution

and management offered by the base station is inefficient for wireless sensor networks due to

high communication overhead. Thirdly, public-key algorithms such as RSA, Diffie-Hellman and

Elliptic Curve Cryptography (ECC) are too expensive to current sensor nodes for high energy

consumption and computation overhead. Experiment results of existing research [32, 76] show

that the execution time of public-key based operations such as encryption and decryption is

of the order of seconds or even ten seconds. Moreover, wireless sensor networks may not be

able to provide the desired Public Key Infrastructure (PKI) for key distribution. We have

to either distribute public keys into nodes through the base station online, which may cause

www.manaraa.com

38

high communication overhead, or pre-distribute public keys into nodes offline, which may need

some scheme like what we propose in this work to improve its efficiency.

Fortunately, the bootstrapping problem can be solved by key pre-distribution schemes

that pre-distribute secret information in nodes to help them establish secure links after de-

ployment. Eschenauer and Gligor [25] proposed basic scheme by utilizing probabilistic key

pre-distribution, which was improved by Chan et al. [17] and Du et al. [22]. Recently, Du et

al. [23] and Liu and Ning [52, 53] independently proposed to make use of deployment knowl-

edge for further improvement of the performance of key establishment. Different from all these

schemes, LEAP [96] proposed by Zhu et al. assumes a weaker model, that is, there exists a

short time interval within nodes can establish pairwise keys safely after deployment.

We propose a novel key management scheme by using deployment knowledge. In our

scheme, a target field is divided into hexagon grids and sensor nodes are divided into the same

number of groups as that of grids, where each group is deployed into a unique grid. Benefited

from deployment knowledge, we can drastically reduce the number of potential groups from

which a node’s neighbors may come. Built on top of Blom’s scheme [8], our scheme distributes

secret information among nodes for them to generate pairwise keys. We first force each group

of nodes to share the same secret matrix, hence, each pair of nodes from the same group are

guaranteed to establish a pairwise key. Then, we assign some extra secret matrices to help the

nodes from neighbor groups establish pairwise keys. By carefully arranging secret matrices for

sensor groups, we achieve a probability approaching one for almost all the nodes to establish

secure links with their neighbors, while the probability offered by other schemes is much less

than one.

We study connectivity of sensor networks utilizing geometric random graph model [31, 60,

68] and derive the transmission range for achieving the desired connectivity based on sensor

distribution. Compared with existing schemes, our scheme requires a shorter transmission

range and achieves a higher connectivity even with a lower memory requirement. In addition,

it has an interesting property: When the number of compromised nodes of a group is less than

a threshold value, wireless communication between all the other nodes belonging to the same

www.manaraa.com

39

group is still secure. Simulation results also show that our scheme outperforms others in terms

of resilience against node capture.

The rest of the chapter is organized as follows: In section 3.2, we discuss deployment model

and define the key pre-distribution problem for wireless sensor networks. Then, we present

our scheme in section 3.3. In section 3.4, we analyze connectivity of wireless sensor networks

and study how to determine the transmission range for achieving the desired connectivity. In

section 3.5, we evaluate security performance in term of resilience against node capture, while

in section 3.6, we compare our scheme with others by simulation. Finally, we conclude in

section 3.7.

3.2 Problem Statement

3.2.1 Deployment Model

In the work, we assume that sensor nodes are stationary after deployment. The distribution

of nodes can be determined from deployment model which shows how sensor nodes are deployed.

A general deployment model states that N nodes are deployed into an arbitrary target field Sf

and the location of each node i (i = 1, . . . , N) follows some distribution of probability density

function (pdf) fi(x, y), where (x, y) ∈ Sf are the node’s coordinates.

Except for deploying all nodes at once, it is also possible to deploy sensor nodes in groups,

which leads to the following group-based deployment model :

• An arbitrary target field Sf is divided into (and covered by) t grids equally.

• N nodes are also divided into t groups equally (and hence each group contains n = N
t

nodes). Each group of nodes will be deployed into a unique grid such that group i will

deployed into grid i (i = 1, . . . , t), where i is called group (and grid) index.

• The center of each grid is called deployment point, which is the desired location of all

nodes of corresponding group. Because of randomness of deployment process, a group

of nodes may spread into a local area around the deployment point to which the group

of nodes should be deployed. Hence, we assume the real location of each group of nodes

www.manaraa.com

40

follows some distribution fi(x, y) = f(x, y, µx, µy), where (µx, µy) ∈ Sf is the coordinates

of deployment point for the group.

Figure 3.1 depicts how to partition a target field into square and hexagon grids.

�

�

�

�

�

�
�

�

�

(a) Partition of square grids

�

�

�

�

�

�
�

�

�

(b) Partition of hexagon grids

Figure 3.1 A target field is partitioned into square or hexagon grids. l is
the distance between two neighbor grids. σ denotes the variance
of normal distribution of sensor nodes. A and B are two de-
ployment points. C is the tangent point of two circles of radius
3σ and each circle is centered at a deployment point.

(Note: In the rest of chapter, we use terms grid and group interchangeably since they corre-

spond to each other.)

In this work, we consider two popular distributions of deployed nodes, that is, uniform

distribution and normal distribution.

For example, we can divide a target field into square grids and drop each group of nodes

randomly in their grid. Thus, we can obtain such a uniform distribution:

fi(x, y) =
1
l2
, (3.1)

where l is the distance between two neighbor deployment points, and x ∈ [µxi − l
2 , µxi + l

2],

y ∈ [µyi − l
2 , µyi + l

2].

Another example might be to drop nodes from a helicopter. Each time when the helicopter

is hanging above some deployment point, a group of nodes will be dropped. Due to randomness,

www.manaraa.com

41

each group of nodes may spread into a small circle area around their deployment point. The

closer to the deployment point, the more nodes reside in the location. So, we may acquire a

normal distribution as follows:

fi(x, y) =
1

2πσ2
e
−[(x−µxi)

2+(y−µyi)
2]

2σ2 , (3.2)

where σ2 is the variance of distribution. This variance may be affected by various factors such

as the height of helicopter and the weather when nodes are deployed. It can be measured by

experiment. Here, we simply assume that it is already known before sensor nodes are deployed.

3.2.2 Threat Model

When designing our key management scheme, we consider the following threats:

• The adversaries can eavesdrop on wireless communication in sensor networks irrespective

of whether it is encrypted or not.

• The adversaries can physically capture and compromise some sensor nodes in order to

obtain the secret keys (or secret information) stored in those nodes.

• Having obtained the secret keys from the compromised nodes, the adversaries can decrypt

or compromise all of the links secured with those keys. The compromised links include

not only those directly connected to the compromised nodes, but also the additional ones

that are established by non-compromised nodes using the same compromised keys.

3.2.3 Bootstrapping Problem

In this work, we define a link as a one-hop and bidirectional connection between a pair of

neighbor nodes, where a pair of neighbor nodes are any two nodes whose physical distance is

no more than their transmission range (suppose all nodes have the same transmission range).

The authors of [96] have defined various types of keys such as individual key, group key, and

cluster key1. However, in this work we focus on how to establish pairwise keys for neighbor
1In [96], individual key is defined as a unique pairwise key between each node and the base station; group

key is defined as a globally shared key used by the base station to encrypt broadcast messages for the whole
sensor network; and cluster key is defined as a key shared by a node and all its neighbors.

www.manaraa.com

42

nodes.

(Note: Cluster has different meanings in [96] and in our work. In [96], a cluster includes a

node and its neighbors. In our work, it is defined as one grid (or group) and its neighbor grids

(or groups).)

Our purpose is to enable neighbor nodes to share some common key(s) that can be used to

secure their communication. More precisely, we consider such a bootstrapping problem that

how to distribute secret key(s) among sensor nodes while achieving the following goals:

• Highly connected sensor network. When measuring how sensor networks are connected,

we only consider the secure links. That is, we do not allow any two neighbor nodes to

be connected if they cannot find any shared key. So, our key management scheme poses

a higher requirement for connectivity. (Note: We define connectivity as the probability

that a deployed sensor network is connected.)

• Strong resilience against node capture. Resilience against node capture is defined as the

fraction of links that the adversaries could compromise given that a certain number of

nodes are compromised. The lower the fraction, the stronger the resilience.

• Low memory requirement. Memory requirement is measured by the number of secret

keys stored in each node.

• Short transmission range. We assume that sensor nodes can adjust their transmission

range by choosing different power levels of radio and this adjustment is done before

deployment. After deployment, all the nodes use the same transmission range that is no

longer changed. Obviously, choosing a shorter transmission range can save more energy.

These goals may cause conflicts. For example, to make more nodes connected, we may

either store more secret keys in sensor nodes or increase their transmission range, hence, the

first goal contradicts the third or the fourth one. When designing our scheme, we have to make

tradeoffs among these goals.

www.manaraa.com

43

3.3 Our Scheme

3.3.1 Background: Blom’s Key Management Scheme

We briefly introduce Blom’s key management scheme [8] here, as our scheme is built on

top of it. (Interested reader may refer to [22] for more detailed explanation.)

Blom’s scheme guarantees that any two nodes out of a group of n ones can always establish

a pairwise key. It employs two basic components, a (λ + 1) × (λ + 1) symmetric matrix D

and a (λ + 1) × n public matrix G. We call (DG)T secret matrix and denote it as A or B,

where T means transpose. In this scheme, all pairwise keys are arranged in an n×n symmetric

matrix K, where K = AG (or BG) = (DG)TG = KT . Each node i stores the i-th row of

secret matrix and the i-th column of public matrix. To establish the pairwise key, two nodes,

e.g., i and j, first exchange their columns of public matrix, then, each one can individually

derive the key, e.g., kij = kji, that is the dot product of its own row and the column received

from the other. Since the secret matrix (or rows) is never transmitted, no adversaries can

get the key by eavesdropping on the communication between these two nodes. Moreover, no

additional links will be revealed given that some node is compromised, because all the rows

(or all the keys) are different. However, if the number of compromised nodes is greater than

λ, the whole secret matrix can be computed (or broken) by the adversaries. This property is

called λ-secure, where λ is called the security threshold.

3.3.2 Overview

Based on the group-based deployment model, we derive that each group of nodes reside

only within a small local area, which implies that most neighbors of each node come from its

own group and neighbor groups. Therefore, to achieve a highly connected network, the key

point is to maximize the probability with which the nodes from the same group and neighbor

groups can find some shared keys. For this purpose, we divide the links of sensor networks

into two types, in-group links and inter-group links, depending on whether the involved nodes

are from the same group or not. Accordingly, for these two types of links, we build two types

of secret matrices, A and B, respectively.

www.manaraa.com

44

Our scheme consists of tow phases, key pre-distribution phase and key discovery phase.

3.3.2.1 Key pre-distribution phase

In this phase, we generate a global public matrix G and a number of secret matrices A

and B. All the groups share the global matrix G, that is, every node of a group picks a

corresponding column from G. Meanwhile, each group is assigned a unique secret matrix A,

that is, every node of a group picks a corresponding row from the unique matrix A assigned

to its group. This way, we guarantee that any two nodes from the same group can always find

a pairwise key.

Then, we assign each group some number of B matrices and guarantee each pair of neighbor

groups share at least one common B matrix. More precisely, we first select some groups and

assign each of them a distinct secret matrix B. These selected groups are called basic groups,

while others are called non-basic groups or normal groups. Then, for each group (including

basic and normal groups), we assign it all the B matrices that have been assigned to its neighbor

basic groups, which are the basic groups among its neighbor groups. After that, each node

picks the corresponding rows from some or all (depending on the different methods that we

will discuss late) of the B matrices assigned to its group. Finally, we set all nodes the same

transmission range and deploy them group by group.

3.3.2.2 Key discovery phase

After deployment, each node first probes its neighbors. Then, neighbor nodes exchange

their group indexes, indexes of B matrices and columns of matrix G. If two neighbor nodes

come from the same group, they can derive the pairwise key from the common matrix A and

G. If they are not from the same group, but share one or more common B matrices, they

can also find out the pairwise key from a shared matrix B and the common matrix G. Last,

the neighbors establishing pairwise keys build the secure link between each other and start

to transmit data securely. Those neighbors without pairwise keys will no longer communicate

with each other.

www.manaraa.com

45

(Note: The nodes without pairwise keys may still exploit other methods such as multi-hop

path reinforcement to establish pairwise keys indirectly. However, this discussion is out of the

scope of this work and we focus only on how to establish the pairwise keys using one-hop links.)

3.3.3 Detailed Procedures

We have different ways to assign B matrices to groups and allow nodes to pick their rows,

which leads to a series of variants of our scheme. Each variant is a method identified by two

parameters, b and w, where b is the maximum number of B matrices assigned to a group and

w is the maximum number of rows picked by a node. (Note: We use maximum here, because

our scheme does not guarantee every group (or node) has the same number of B matrices (or

rows).) We denote each method as (b =?, w =?), where “?” is some integer value. The value

of b is 2, 3 or 7 and w may take a value no greater than that of b. Hence, we have totally

2 + 3 + 7 = 12 slightly different methods. (Late on, we will discuss these methods in detail.)

For example, for method (b = 2, w = 2), b = 2 means each group will be assigned at most two

B matrices, and w = 2 means each node will store at most two rows with each picked from a

distinct matrix B. More precisely, if a group is assigned two B matrices, every node of this

group will store two rows with each from a B matrix. If the group has only one B matrix,

each of its nodes will store one row picked from the only matrix B.

In our scheme, each node stores one column of matrix G, one row of matrix A and at most

w rows of B matrices. Each row has (λ+ 1) elements. Du et al. demonstrated in [22] that if

the public matrix G is a Vandermonde matrix, each column can be derived from a single seed

integer and hence memory consumption for columns can be ignored. Given the memory size

of M for each node, the value of threshold λ of our scheme can be determined as follows:

M = (λ+ 1)(w + 1) =⇒ λ =
M

w + 1
− 1 . (3.3)

In our scheme, not every node is able to pick w rows from B matrices. So, equation (3.3) gives

us a worst-case value of λ or a lower bound on λ.

Now, we present the procedures of our scheme in detail.

www.manaraa.com

46

3.3.3.1 Key pre-distribution phase

• We generate a public matrix G to be shared by all the groups and a unique secret matrix

Ai for each group i, where i = 1, . . . , t and t is the total number of groups. Each node j

of group i picks the j-th row of Ai, where node index j = 1, . . . , n.

• The target field is divided into t = t1 × t2 grids. Hence, the coordinates of group i can

be represented by a pair of row and column indexes (ri, ci), where ri = 1, . . . , t1 and

ci = 1, . . . , t2.

• Now, we select some groups as basic groups and assign each basic group a distinct B

matrix. More precisely,

– For the methods of b = 2, if the coordinates of group i satisfy “ri mod 2 = 0 and

ci mod 2 = 0, but ri mod 4 6= 0” or “ri mod 4 = 0 and ci mod 2 = 1”, this group

is selected as a basic group and assigned a distinct matrix B, as shown in Figure

3.2(a), where the basic groups are labeled in Bold and italic font. We repeat this

step until all the basic groups are found.

– For the methods of b = 3, if the coordinates of group i satisfy “ri mod 2 = 1 and

ci mod 3 = 0” or “ri mod 2 = 0 and ci mod 3 = 2”, this group is selected as basic

group and assigned a distinct matrix B, as shown in Figure 3.2(b). We repeat this

step until all basic groups are found.

– For the methods of b = 7, every group is a basic group. We assign each group i a

distinct matrix Bi, as shown in Figure 3.2(c).

• Then, we assign B matrices to the normal groups for the methods of b = 2 or 3, and

assign more B matrices to the basic groups for the methods of b = 7.

– For the methods of b = 2 (or 3), we assign each normal group all the B matrices

that are already assigned to its neighbor basic groups. Except for those at the edge

of the target field, each normal group has two (or three) neighbor basic groups.

Thus, these normal groups is eventually assigned two (or three) B matrices.

www.manaraa.com

47

�� �� ��

�� �� �� ��

�	 ��

������ ������

������ ������

������

������ �����	�����
� ������

������

��

������

������ ������

������ ������

�����	�����
�

�
���� �����	�

���

��� ��� �� �� �� ��

��

�

�
 �
 �� �� ��	 ��	

��	

(a) Assignment of B ma-
trices when b = 2. One
cluster contains at most
two basic groups.

��

��

��

��

��

��

��

��	

���

��

������

���

�����

���
����	
�

�����

�		�

�����

�	��

���

�����

�	
�

�	���

���

������

����		�

����		

�	��

���

��� �	���� �	��� �����

�����

�		

�		 �		��	� �	���	� �	���	�

�	
��	�

�	

�

���

���

�	���

���

������

���

������

���

�����

���

�����

��

����	

�	��

����	�

�	��

����	

�	��

(b) Assignment of B ma-
trices when b = 3. One
cluster contains at most
three basic groups.

��

��

���

���

���

���

��	

���

��

��	

���

��� ��

���

���

��

���

��	

���

�	

�� �� �� ��

���

���

��
 ��� ��� ���

���

��

���

���

���

��

������

���

���

���

��� ���

���

���

(c) Assignment of B ma-
trices when b = 7.
One cluster contains ex-
act seven basic groups.

��

��

��

��

��

��

����

��

��

����

��

����

��

����

��

����

��

��	 ��	��	

��

���� ���� ����

������

��

����

��

����

��

����

����

��

����

��
����

����

��

����

����

��

���� ����

����

��

����

��

����

��

����

��

����

��

����
����

��

����

��
������

���� ��

��

(d) Assignment of B ma-
trices when b = 1. One
cluster contains at most
one basic group.

Figure 3.2 Different ways to assign B matrices, when the target field is
partitioned into hexagon grids. The basic groups are labeled
in bold and italic font. The compromised nodes are within
the groups marked with a small (blue) circle and the groups
affected by the compromised nodes are bounded by irregular
(red) lines. In sub-figure (c), each group is actually assigned
seven B matrices, where six matrices come from its neighbor
groups and one is shown in the corresponding grid for the group.

– For the methods of b = 7, all the groups are the basic groups and each group (except

for those at the edge of the target field) has six neighbors. We further assign each

group all the B matrices originally assigned to its neighbors. Thus, except for those

at the edge of target field, each group is eventually assigned seven B matrices.

• After all the groups have their B matrices assigned, each node tries to select w rows from

these matrices. Given a node of index i,

– If its group is assigned more than w matrices, the node first randomly selects w

matrices, then picks the i-th row from each selected matrix.

– Otherwise, if its group has exactly or less than w matrices assigned, then the node

directly picks the i-th row from each matrix. (That is why our scheme can not

guarantee each node has exactly w rows picked from B matrices.)

• Finally, we set an identical transmission range r for all the nodes and deploy them into

www.manaraa.com

48

the target field group by group.

Figures 3.2(a), 3.2(b) and 3.2(c) show the different ways to assign B matrices, when b = 2,

3 and 7 and the target field is partitioned into hexagon grids. In these figures, the basic groups

are labeled in bold and italic font. The common feature of these assignments is that any two

neighbor groups share at least one common B matrix.

3.3.3.2 Key discovery phase

• After deployment, each node broadcasts its group index, the indexes of B matrices and

the column of G, while receiving the same information from its neighbors.

• Then, each node checks if it has any index matches one of those received from its neigh-

bors:

– If two neighbor nodes have the same group index, then either of them can derive

the pairwise key by computing the dot product of its own row of matrix A and the

column received from the other.

– If two neighbors share exactly one B matrix, then either of them can derive the

pairwise key by computing the dot product of its row of that B matrix and the

column received from the other.

– If two neighbors share more than one B matrix, then they select the same matrix

from the shared ones and derive the pairwise key based on the selected matrix B.

To make agreement with the selected matrix, they can either negotiate with each

other or (for example) simply select the matrix that has the smallest index.

– If no matched index found, two neighbors will no longer communicate with each

other.

3.3.4 Variants of Our Scheme

We have presented twelve variants of our scheme, but it is still not clear why we need these

variants, what features they have, and whether there are other variants. In this sub-section,

www.manaraa.com

49

we try to answer these questions by studying three metrics, connectivity, memory usage, and

security (i.e., resilience against node capture) of these variants.

• We evaluate connectivity by measuring the probability that two nodes from the same

group and neighbor groups can establish a pairwise key, because the group-based deploy-

ment model indicates that most neighbor nodes are from the same group or neighbor

groups.

• Memory usage is measured by the number of rows of B matrices stored in sensor nodes.

• To compare security of different variants, we introduce a new term, the affected groups.

Since one matrix B may be shared by multiple groups, if the adversaries compromise

some nodes of one group and obtain certain rows of the matrix B that is assigned to

the group, they can compromise the additional links established by the nodes of other

groups that share the same matrix B. We define the affected groups as, given a group

with some nodes compromised, all other groups that share the same B matrices as the

group. Hence, security of a variant can be roughly measured by the number of affected

groups.

In our scheme, a group’s B matrices come from its neighbor basic groups. We define a cluster

as one (central) group along with its neighbor groups, and we study the variants of our scheme

based on clusters, because we found that the different ways we assign basic groups in clusters

directly form different variants. (Note: When nodes are deployed in hexagon, square or triangle

grids, each cluster contains seven, nine or thirteen groups.)

The variants of our scheme can be categories into three classes depending on the value of

b, which can only be 2, 3 or 7. Each class corresponds to a different assignment of B matrices,

as shown in Figures 3.2(a), 3.2(b) and 3.2(c). We use methods (b = 2, w = 2), (b = 3, w = 3)

and (b = 7, w = 7) to represent these assignments respectively. They have almost the same

performance in terms of connectivity, because they can all guarantee that any two nodes from

the same group or neighbor groups establish a pairwise key. Thus, we only need to study these

assignments in terms of memory usage and security.

www.manaraa.com

50

When b = 2, we assign two basic groups in each cluster whose central group is a normal

one. The two basic groups are located symmetrically with respect to the central one. In this

assignment, each group is assigned at most two B matrices. Considering method (b = 2, w = 2)

of this assignment, each node stores at most two rows of B matrices and compromising nodes

of one group can affect at most 13 groups. In Figure 3.2(a), 13 affected groups are bounded

by irregular (red) lines, given that the compromised nodes are within group B5B6, which is

marked with a small (blue) circle.

Similarly, when b = 3, we assign at most three basic groups in each cluster and each

(normal) group is assigned at most three B matrices. This assignment is depicted in Figure

3.2(b). Considering method (b = 3, w = 3), each node stores at most 3 rows of B matrices. As

shown in Figure 3.2(b), given the compromised nodes within group B5B8B9 that is marked

with a small (blue) circle, there are 16 affected groups that are bounded by irregular (red) lines.

Clearly, method (b = 3, w = 3) is worse than method (b = 2, w = 2), because it consumes

more memory of sensor nodes and produces more affected groups given that one group is

compromised.

When b = 4, 5 and 6, we find that no explicit assignments can be constructed, because if we

assign four, five or six basic groups in one cluster, the pattern of cluster cannot be repeated over

the whole target field. However, it is possible to build an assignment when b = 7. As shown

in Figure 3.2(c), each group is a basic one and hence a cluster contains seven basic groups.

Considering method (b = 7, w = 7), each node (except for those at the edge of field) has to

store seven B matrices. This method produces 19 affected groups, given that some number

of nodes within a group are compromised. Obviously, this methods is worse than methods

(b = 2, w = 2) and (b = 3, w = 3) that are the representatives of other two assignments when

b = 2 and 3, respectively.

When b = 1, we find that it is impossible to construct an assignment following the same

rule as building other assignments. Otherwise, we have to assign exact one basic group in each

cluster, which provides no guarantee to connectivity, that is, it is possible that two neighbor

groups share no common matrix B. Hence, we have to modify the rule and build a new

www.manaraa.com

51

assignment, as shown in Figure 3.2(d). In this assignment, we have to assign each normal

group (except for those at the edge of the field) three different B matrices, so each node should

store at most three rows. When some nodes within a group are compromised, up to 43 groups

might be affected. (Due to space limit, we do not show all the affected groups in Figure 3.2(d).)

Compared with other assignments, this one is the worst in terms of memory usage and security

and is eventually not selected as a possible solution to our bootstrapping problem.

So far, we have explained why there are only three possible assignments. For each assign-

ment, we have multiple choices for sensor nodes to pick rows from B matrices. Let w denote

the number of rows of B matrices picked by a node. w can take any value no more than that

of b. Generally, given a fixed value of b, the smaller the value of w, the lower the connectivity,

because it is less likely for neighbor nodes to find shared B matrices. Meanwhile, taking a

smaller value of w leads to a higher resilience against node capture, since each matrix B is

shared by less number of groups (or nodes). Similarly, if we fix the value of w, then the bigger

the value of b, the lower the connectivity and the stronger the resilience, because the nodes

have more choices to select B matrices and are less likely to find shared B matrices.

3.3.5 Shape of Grids

Only certain shapes of grids can be repeated to cover a continuous field. They are triangle,

square (or rectangle) and regular hexagon. Figure 3.3 depicts the clusters of different shapes

of grids (or groups). It shows that a triangle, square and hexagon grid have twelve, eight and

six neighbors, respectively.

Figure 3.3 A cluster of triangle, square or hexagon grids (or groups). A
triangle, square and hexagon grid have 12, 8 and 6 neighbors,
respectively.

Same as to assign B matrices in hexagon grids, we can construct an assignment for square

www.manaraa.com

52

grids. As shown in Figure 3.4, we assign three basic groups in each cluster. A possible

assignment for triangle grids is also to assign three basic group in each cluster, which has not

been shown.

�� �� ��

�� �� �� ��

�	 �
 ���

����

��

����

��

����

����

����

��

����

�	

����

�	

���� ����

���� ���	

����

��

����

��

����

��

�	��

��

�	��

��

�	���	 ��

�����	��

���� ���	
�� �	
 �	

�	

���	
����

��

�� ��

�	�� ���� �� �����	�	

Figure 3.4 Assignment of B matrices when a target field is partitioned into
square grids. The basic groups are labeled in bold and italic
font. The compromised nodes are within the group marked
with a small (blue) circle and the affected groups are bounded
by (red) lines.

Table 3.1 compares the assignments of B matrices given different shapes of grids, where

a node picks the corresponding row from every matrix B assigned to its group. We list the

Table 3.1 Comparison among assignments given different shapes of grids

Triangle Square Hexagon
Neighbor groups 12 8 6
Affected groups 31 21 13

Rows stored 4 4 3

number of neighbor groups for each group, that of affected groups given that some nodes

are compromised with one group, and that of rows (from both A and B matrices) stored in

nodes. It is clear that partitioning a target field into hexagon grids has the least number of

affected groups and the least number of rows stored in nodes. This means that hexagon grid

www.manaraa.com

53

partitioning is the best in terms of security and memory usage, compared with square and

triangle grid partitioning. Simulation results presented late will also prove this. (Triangle grid

partitioning is apparently the worst and will no longer be studied.)

3.4 Connectivity Analysis

3.4.1 Grid Size Control

Let Pc denote connectivity, which is defined as the probability that a deployed sensor

network is connected as the total number of nodes approaches infinity. Let p denote the

probability that two neighbor nodes find at least one shared key. Obviously, connectivity

grows up as p increases. Unlike the existing schemes that has a p value much smaller than one,

most variants of our scheme can offer a much bigger p that approaches one. Four methods

(b = 2, w = 2), (b = 3, w = 3) and (b = 7, w = 6 or 7) can even guarantee p = 1 for the

neighbor nodes coming from the same group or neighbor groups. However, when the neighbor

nodes are from non-neighbor groups, our scheme can only provide a very small or even zero p.

Hence, to achieve a high connectivity, we need to control the size of grids to make the nodes

from non-neighbor groups impossible to become neighbors.

When each group of nodes are uniformly distributed into a small local area, grid size

control is easy, because we only need to make every grid cover the small area in which the

corresponding group of nodes reside. However, it is not so straightforward when the location of

nodes follows normal distribution. So, we focus on how to find a proper grid size under normal

distribution. As shown in equation (3.2), the normal distribution of each group is identified

by two parameters, the deployment point of the group and the variance σ. To measure grid

size, we define the metric l as the distance between two neighbor deployment points. Our

problem turns to: given some value of σ, how to set a proper value of l so that the nodes from

non-neighbor groups are unlikely to become neighbors.

The property of normal distribution tells us that 99.87% nodes of a group would reside

within a circle of radius 3σ that is centered at the group’s deployment point. Given σ, we

can use such a circle of radius 3σ to roughly represent a group of nodes. This representation

www.manaraa.com

54

can help us determine the value of l. First of all, l cannot be too big. Otherwise, when

the value of σ is fixed and the size of grid is much larger than that of circle, all groups are

separated from each other, which makes the deployed network completely partitioned. When

we reduce the value of l, the deployment points are getting closer, which means that the circles

(or groups) are moving to each other. Hence, the nodes should find more and more neighbors

coming from their neighbor groups, instead of coming from their own groups, and the deployed

network should be better connected. However, when the value of l becomes too small, e.g.,

the size of circle is even larger than that of a cluster of grids, the nodes of one group could

spread into the grids that correspond to the non-neighbor groups, which definitely lowers the

connectivity of deployed sensor network. Therefore, the value of l cannot be too big or too

small. Our purpose is to choose the value of l as small as possible, but not allow the nodes from

non-neighbor groups to become neighbors. In this way, we are able to maximize connectivity.

Let us consider the case that a target field is partitioned into hexagon grids as shown in

Figure 3.1(b). In the figure, two circles of radius 3σ represent two groups whose grids are

the nearest non-neighbor grid of each other. If the nodes from these two different groups are

not able to meet each other, we claim that almost all the neighbors of one node should come

from the node’s own group or neighbor groups. If we further reduce the size of grid, those two

circles become overlapping, which means that more and more nodes from non-neighbor groups

become neighbors. Hence, the smallest grid size that prevents the nodes from non-neighbor

groups from being neighbors, can be obtained when those two circles become tangent to each

other. Observing triangle 4ABC in Figure 3.1(b), we can easily find that AB = l, AC = 3σ

and ∠CAB = 30◦. Thus, we have AB = 2√
3
AC, or equivalently, l = 2

√
3σ. Similarly, we

can derive that AB = l = 3σ in Figure 3.1(a), when the target field is partitioned into square

grids. Given this setting of l, we conclude that each node has 99.87% probability to find the

pairwise key with any of its neighbors.

www.manaraa.com

55

3.4.2 Transmission Range Setup

Existing schemes [17, 22, 25] adopted random (Bernoulli) graph model [69] for connectivity

analysis. However, this model does not consider transmission range of sensor nodes [68] and

simply assumes any two nodes have the same probability p to establish a connection. In fact,

when two nodes are out of each other’s transmission range, p approaches zero.

To better model wireless sensor networks, we adopt geometric random graph [31, 68] for its

consideration of nodes’ transmission range. Given N nodes randomly placed in a unit target

field Sf , a geometric random graph G(N, r) is constructed in such a way that an edge between

any two nodes exists if and only if they are within a distance of r from each other. Penrose

[60] studied the longest edge of random Minimum Spanning Tree (MST). He proved that the

longest edge MN of an MST, whose N points are randomly and uniformly distributed in a unit

square, satisfies

lim
N→+∞

Pr(NπM2
N − lnN ≤ α) = e−e

−α
, (3.4)

for any real number α. Since a sensor network is always connected when r ≥ MN , if we set

Nπr2 = lnN + α, then

lim
N→+∞

Pr(MN ≤ r) = lim
N→+∞

Pc = e−e
−α

. (3.5)

Equation (3.5) illustrates how to calculate the value of r by determining the value of α for

achieving some desired connectivity Pc as N approaching infinity. However, we should also note

that equation (3.5) has nothing to do with any finite value of N . We can only say that given

α, if we always set Nπr2 = lnN + α, then connectivity of the deployed network approaches

e−e
−α

, when N is large enough. Hence, equation (3.5) can be used to determine the value of

r for achieving the desired connectivity, when N is large enough. Although this result looks

similar to that of Bernoulli graph [25], they are derived under different conditions, that is,

transmission range has been taken into consideration in geometric random graph.

For those variants (or methods) providing p = 1 for the nodes from the same or neighbor

groups, we can make use of the geometric random graph model to evaluate the required trans-

mission range for achieving the desired connectivity. For example, in our scheme if we deploy

www.manaraa.com

56

104 nodes uniformly into their grids over a 103 × 103m2 square field and require Pc = 0.9999,

from equation (3.5) we can derive α ' 9.21 and further obtain r ' 24.22m, which is the trans-

mission range required to achieve the desired connectivity. However, if we adopt the basic

scheme in the same condition, and set memory size M = 200 and key pool size |S| = 105 with

p = 0.33, then we have to set r ' 40m in each node to obtain a degree of 18 over 50 neighbors

for achieving the same connectivity. Hence, our scheme requires a shorter transmission range

than that of the basic scheme.

If nodes are not uniformly distributed, we cannot use equation (3.5) directly, because node

density over the entire target field is not identical. It is easy to know that the area around

a deployment point has higher node density than that around the intersection of every three

neighbor hexagon grids (or every four neighbor square grids). If we assume the lowest node

density over the entire target field, we can obtain an upper bound on transmission range in the

worst case, because the lower the node density over the target field, the larger the transmission

range required for achieving some desired connectivity. In practice, when we apply this larger

transmission range, the nodes within the areas other than those intersection areas must be

able to connect more neighbors. Hence, we can claim that the real connectivity over the entire

target field would not be lower than the desired one given this new (larger) transmission range.

Figure 3.5 illustrates how to measure the lowest node density within a small circle area,

when l = 2
√

3σ. This circle area has a radius of R and is centered at some intersection point.

In this figure, we only show three neighbor groups (or grids), because the nodes from other

groups do not reside in this circle area. For convenience, we represent normal distribution

using polar coordinates and define n′ as the number of nodes within the circle area. We have

n′ =
3n

2πσ2

∫ 2σ+R

2σ−R
h θ(h) e

−h2

2σ2 dh , (3.6)

where θ(h) = 2 cos−1(h
2+(2σ)2−R2

4σh). Thus, the lowest node density is n′

πR2 . Substituting n′

πR2

for N in equation (3.5), we get

r =

√√√√ ln(n′

πR2)− ln(− ln(Pc))
n′

R2

. (3.7)

www.manaraa.com

57

�

�

Figure 3.5 Computing the lowest node density within a circle area in polar
coordinate system. The circle area has a radius of R and is
centered at the intersection of three hexagon grids. The arrowed
line is polar axis and h denotes the radial coordinate of some
point.

For instance, if we deploy 104 nodes under normal distribution into a 103× 103m2 square field

with R = 24.22m and σ = 50m, we get r ' 31.25m. That is, we only need to increase r

from 24.22m under uniform distribution to 31.25m under normal distribution for achieving

Pc = 0.9999. Compared with r = 40m of the basic scheme under uniform distribution, our

scheme requires a shorter transmission range for achieving the same connectivity even under

normal distribution.

To see why our scheme requires a shorter transmission range, we study the number of

links involved in the small circle area. In the basic scheme, when n = 104 nodes deployed in a

103×103m2 square field, each node needs around 50 neighbors for achieving Pc = 0.9999, when

r = 40m and p = 0.33. There are about n′ = πR2 N
103×103 ' 18.4 nodes in the circle. Hence,

the number of links connected to nodes within this circle area is p[(50− 1)n′− n′(n′−1)
2] ' 247,

where n′(n′−1)
2 is the number of links whose both end nodes reside within the circle area and

it is counted twice in (50− 1)n′. On the other hand, simulation results show that our scheme

generates 371 links in the same circle area, when r = 40m and the target field is partitioned

into hexagon grids. If we adopt square grids, there are even 483 links. Since our scheme

achieves p approaching one and the basic scheme has only p = 0.33, it is easy to see why our

scheme can generate more links with the same transmission range, which means our scheme

can always achieve a connectivity higher than that of the basic scheme. In other words, for

www.manaraa.com

58

achieving the same connectivity, our scheme requires a shorter transmission range.

3.5 Security Analysis

3.5.1 Evaluation Metrics

We evaluate security, i.e., resilience against node capture, in terms of two metrics, global

security and local security. The first one is measured as the fraction of links compromised,

when adversaries randomly compromise some nodes over the whole target field. However, it

might be easier for adversaries to capture nodes within a small local area. So, we also evaluate

local security, which is defined as the fraction of links compromised, when compromised nodes

are located within a grid. (For simplicity, we use a grid to simulate the small local area within

which adversaries compromise nodes.) Obviously, local security metric is more stringent than

global one, because breaking a secret matrix becomes easier for adversaries if compromised

nodes concentrate within a small area.

Given that some nodes are already compromised, adversaries can compromise not only the

links connected to these nodes directly, but also additional links between non-compromised

nodes secured by the keys obtained from the compromised nodes. In our evaluation, we count

all of the links that adversaries can compromise, but other schemes only consider the additional

links. Therefore, our metrics are stricter than those of other schemes. In this work, we conduct

theoretical analysis on local security, but study global security only by simulation because the

theoretical analysis on global security is too complicated.

3.5.2 Theoretical Analysis of Local Security

For simplicity, we consider uniform distribution in only two special cases: (1) exactly one

node compromised, and (2) more than λ nodes compromised.

3.5.2.1 Exactly One Node Compromised

To compute local security, i.e., the fraction of links compromised given that exactly one

node is compromised, we consider in-group links and inter-group links separately.

www.manaraa.com

59

We first compute the number of in-group links that adversaries can compromise. Under

uniform distribution, each node has about πr2q − 1 neighbors, where node density q = N
|Sf | .

Regardless of those nodes deployed at the edge of grids, the number of neighbors of a node is

the same as that of in-group links this node has. For example, given N = 104 nodes uniformly

deployed into a square field of |Sf | = 103 × 103m2 and transmission range r = 24.22m, each

node has πr2q − 1 ' 17.4 neighbors, that is, about πr2q − 1 ' 17.4 in-group links will be

compromised given one compromised node.

Then, we estimate the number of inter-group links that adversaries can compromise. When

nodes are deployed into square grids shown in Figure 3.6(a), inter-group links can only be

formed in a common area along the shared edge between two grids. This common area consists

of two strip areas and the width of each strip area is r.

�
� �

�

�

�

� �
�

�

�

� �

(a) Partition of square grids

�
� �

�

�

�

� �
�

�

�

� �

(b) Partition of hexagon grids

Figure 3.6 Computing the number of inter-group links compromised when
a target field is partitioned into square or hexagon grids. A

and C denote compromised nodes. x is the distance between A
and B. The arrowed lines denote axes. Two arc areas and one
quarter area are bounded by thick (red) lines.

We define Lcomm as the average number of inter-group links compromised in a common area

and show how to calculate Lcomm that is twice of the number of inter-group links compromised

in each strip area.

Let L denote the average number of inter-group links connected to a compromised node

that happens to fall into a strip area. Equivalently, L is the average number of this node’s

www.manaraa.com

60

neighbors coming from neighbor groups. As shown in Figure 3.6(a), these neighbors must be

located in the arc area that is covered by the node’s transmission region and within a neighbor

grid. Hence, we have

L =
q

r

∫ r

0
(r2 cos−1 x

r
− x
√
r2 − x2) dx , (3.8)

where x is the distance between the node and the shared edge.

However, equation (3.8) counts twice the number of links formed with a diagonal neighbor

group and hence should be subtracted from L. Observing the square grids in Figure 3.6(a),

we find that only those nodes falling into the quarter area can form inter-group links with a

diagonal neighbor group, where this quarter area is covered by the node’s transmission region

and within a diagonal neighbor grid. Let L′ denote the average number of inter-group links

formed when the node resides in the quarter area. We have

L′ =
4q
πr2

∫ r

0

∫ √r2−x2

0
[
θπr2

2π
− r2 sin θ

2
+

(
√
r2 − x2 + y)(

√
r2 − y2 − x)

2
] dx dy , (3.9)

where θ = π
2 − sin−1 x

r − sin−1 y
r . Hence, for square grids, if one node is compromised and

resides in a strip area, (L − L′) inter-group links would be compromised. For hexagon grids,

calculating L′ is too complicated. So, we directly use L to estimate the number of inter-group

links compromised, as shown in Figure 3.6(b).

The probability that a node falls into a strip area is the ratio of this strip area over the area

of a grid. For hexagon grids, this probability is r
3
√

3l
2

, and for square grids, it is r
l . Recalling

that a common area consists of two strip areas, we get

Lcomm =
4r

3
√

3l
L (for hexagon grids)

or
2r
l

(L− L′) (for square grids) . (3.10)

To estimate the number of inter-group links the adversaries can compromise, we should

further know how many common areas should be counted. Since a common area is only

formed between two affected groups, we only need to know the number of affected groups.

However, we should differentiate two cases p = 1 and p 6= 1 separately, when a compromised

inter-group link is formed by nodes from neighbor groups.

www.manaraa.com

61

Let us consider the case of p = 1 for nodes from neighbor groups. For example, for

method (b = 2, w = 2) with hexagon grid partitioning shown in Figure 3.2(a), compromising

a node of normal group B5B6 would affect 13 groups that form 26 common areas. Therefore,

26Lcomm inter-group links would be compromised. For method (b = 3, w = 3) with square

grid partitioning shown in Figure 3.4, there are totally 32 common areas formed among 21

affected groups. However, in some common areas, neighbor groups share two B matrices with

only one compromised and a pairwise key is computed from a randomly chosen matrix. For

instance, given that one node of group B5B6B9 is compromised, neighbor nodes from groups

B1B4B5 and B1B2B5 can establish a pairwise key (or a secure link) using either B1 or

B5. In this case, only the key (or the link) established based on B5 will be compromised,

which means in these areas only half of inter-group links would be compromised. Since there

are 16 such common areas, the number of inter-group links compromised in square grids is

(1
2 ×16+16)Lcomm = 24Lcomm. (Note: The value of Lcomm is different for hexagon and square

grids.)

Because each node has πr2q− 1 neighbors, there are totally N
2 (πr2q− 1) links in the whole

network. Considering both in-group links and inter-group links, we compute local security

given that exactly one node compromised as follows:

(πr2q−1)+26Lcomm
N
2

(πr2q−1)
(for hexagon grids)

or (πr2q−1)+24Lcomm
N
2

(πr2q−1)
(for square grids) . (3.11)

In the case of p < 1 for nodes from neighbor groups, compromising one node may not always

cause inter-group links of some common area compromised, because two nodes from neighbor

groups may not establish a secure link. For example, for method (b = 3, w = 2) with hexagon

grid partitioning shown in Figure 3.2(b), one node of group B5B8B9 is compromised. (For

simplicity, we assume each of three matrices B5, B8 and B9 has a row compromised.) Now, let

us consider two nodes such as node i from group B5B8B9 and node j from B5B7B9 become

neighbors. When node i picks rows from matrices B5B8 and node j picks rows from B7B9,

or node i from B8B9 and node j from B5B7, they cannot establish a secure link. Hence, in

this case we should not count this non-existing link. In fact, node i has probability 1
3 to select

www.manaraa.com

62

B5B8 or B8B9, and node j is similar. So, they have only probability 7
9 to establish a secure

link. In general, for each common area i, we define pi as probability that an inter-group link

can be established for nodes within the common area, and Lcomm,i is defined for this common

area similarly. Thus, for any method of hexagon grid partitioning, we compute local security

given one compromised node as follows:

(πr2q − 1) +
∑26

i=1 piLcomm,i
N
2 (πr2q − 1)

. (3.12)

Local security for methods of square grid partitioning can be calculated similarly.

3.5.2.2 More Than λ Nodes Compromised

If more than λ nodes of a group are compromised, the matrix A and some B matrices

will be broken, as if all n nodes of the group were compromised. However, we cannot simply

calculate the fraction of links compromised as n multiples of the value of (3.12), because in

that way we would count each compromised link twice due to its both end nodes compromised.

Because either end of each compromised link involves a compromised row, we count the number

of compromised links twice. Thus, the true value is n
2 multiples of that of (3.12), which is

n(πr2q − 1) + n
∑26

i=1 piLcomm,i
N(πr2q − 1)

. (3.13)

Similar result can be obtained when nodes are deployed into square grids.

Our theoretic calculation based on expressions (3.11) and (3.13) matches simulation result.

The error between theoretic calculation and simulation result is no more than 5% for hexagon

grids and 3% for square grids, which has not been shown here.

3.6 Simulation Study

3.6.1 Simulation Setup

In this section, we perform simulation study. We compare our scheme with others in terms

of security and connectivity, and study the impact of grid size and estimation error on the

performance of our scheme. Without specification, we use method (b = 2, w = 2) shown in

www.manaraa.com

63

Figure 3.2(a) and method (b = 3, w = 3) shown in Figure 3.4 to represent our scheme, when

nodes are deployed into hexagon and square grids.

We define connectivity as the probability that a deployed network is connected when the

total number of nodes approaches infinity. However, it is impossible to measure in simulation.

So, we adopt an alternative definition used in [23], which measures connectivity as the fraction

of the size of the largest component of the deployed network, where a component is a connected

subgraph.

We list our simulation setup in Table 3.2, where “Du’s scheme” means Du’s deployment

knowledge scheme. In simulation, we assume that 104 nodes are deployed into a 103 × 103m2

square field with the desired connectivity Pc = 0.9999. In our scheme, we set σ = 33.3m and

l = 3σ (or 2
√

3σ) for square (or hexagon) grids. For Du’s deployment knowledge scheme, we

choose σ = 50m and l = 2σ. Hence, both schemes have similar grid size. When testing normal

distribution in our scheme, we compute transmission range dynamically based on the lowest

node density that is measured online.

Table 3.2 Simulation Setup

Our Scheme Du’s Basic
Square Hexagon Scheme Scheme

N 104

Sf 103 × 103m2

Pc 0.9999
t 100 104 100 –
n 100 96 100 –
l 100m 115m 100m –
σ 33.3m 33.3m 50m –
r 24.22m (Uniform) 40m

dynamic (Normal)
M 100 100 & 140 100 & 200
λ 24 32 –

We set σ = 33.3m in our scheme, instead of σ = 50m as in Du’s deployment knowledge

scheme. Otherwise, the number of groups of our scheme is only about half of that of Du’s

scheme. Since our scheme guarantees that the nodes from the same group are always connected,

the smaller the number of groups, the higher the connectivity that our scheme can achieve. To

www.manaraa.com

64

be fair to Du’s scheme, we decide to set σ = 33.3m in our scheme in order to keep the number

of grids approximately the same in both schemes.

3.6.2 Simulation Study on Local Security

Figure 3.7 depicts the fraction of links compromised in our scheme as a function of the

number of nodes compromised, where these nodes are all located in the same group. In the

figure, “Our (Sqr-Uni, M=100)” denotes our scheme under uniform distribution with square

grids and memory of size 100. Other labels have similar meaning, for example, “Hex” denotes

hexagon grids.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

1 25 50 75 100
Number of nodes compromised

F
ra

ct
io

n
of

 li
nk

s
co

m
pr

om
is

ed

Our (Sqr-Uni, M=100)

Our (Hex-Uni, M=100)

Our (Sqr-Uni, M=200)

Our (Hex-Uni, M=200)

Figure 3.7 Local security: the fraction of links compromised as a function
of nodes compromised, when all of the compromised nodes are
located in the same group. “Our” is the short term of our
scheme. “Sqr”/“Hex” denotes Square/Hexagon grids. “Uni”
means Uniform distribution.

Observing the curves shown in Figure 3.7, we find that when the number of nodes compro-

mised exceeds some threshold value, the fraction of links compromised no long increases. For

example, for the curve labeled as “Ours (Sqr-Uni, M=100)”, i.e., nodes are uniformly deployed

in square grids with M = 100, when more than 25 nodes are compromised, the fraction of

links compromised goes up to its highest value 0.032. It is due to λ-secure property of Blom’s

www.manaraa.com

65

scheme we adopt. In this case, the number of nodes compromised is greater than the security

threshold, which is λ = 100
4 − 1 = 24 (following equation (3.3)), so all secret matrices of the

compromised group are broken.

From Figure 3.7, we also find that the curves of M = 200 are lower than those of M = 100.

It demonstrates that our scheme performs better in local security given more memory space. It

can be explained using equation (3.3), which shows that the larger the value of M , the greater

the threshold λ and hence the better the performance of local security.

Further, we observe that the curves of “Hex” have better performance in local security than

those of “Sqr”, which means that partitioning a target field into hexagon grids is better than

into square ones. There are two reasons to explain why hexagon partition is better. First, the

length of each common area between hexagon grids is much shorter than that between square

ones (66m vs 100m). Meanwhile, both kinds of partitions generate almost the same number

of common areas (26 vs 24 shown in expression (3.11)). So, a node is less likely to fall into a

common area in hexagon deployment, which in turn provides stronger resilience against node

capture than square deployment. Second, a hexagon grid has less neighbors than a square

one does. Thus, a node in hexagon deployment needs to store less rows, or equivalently, each

row stored by a node in hexagon deployment is longer than that stored in square deployment.

Recalling the length of row is λ+1, we can see hexagon deployment offers a bigger λ and hence

performs better in local security.

3.6.3 Simulation Study on Global Security

Figure 3.8 shows the comparison among various schemes in terms of global security, where

“Du’s deployment” represents Du’s deployment knowledge scheme [23] and “Du’s pairwise”

stands for Du’s pairwise key scheme [22]. Here, we choose the curve (τ = 5, p = 0.42), Simulation

shown in Figure 3 of [22] as the representative of Du’s pairwise key scheme. It achieves a con-

nectivity approaching 0.9999 and requires M = 200.

Figure 3.8 illustrates that our scheme is always better than others (except for Du’s pairwise

scheme), for achieving the same connectivity with even a smaller memory space. For example,

www.manaraa.com

66

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 50 100 150 200 250 300
Number of nodes compromised

F
ra

ct
io

n
of

 li
nk

s
co

m
pr

om
is

ed

Basic scheme (M=200)

Du's deployment (M=140)

Our (Sqr-Nor, M=100)

Our (Hex-Nor, M=100)

Our (Sqr-Uni, M=100)

Our (Hex-Uni, M=100)

Du's pairwise (M=200)

Figure 3.8 Global security: the fraction of links compromised as a func-
tion of nodes compromised, when the compromised nodes are
distributed over the whole network. “Du’s deployment” and
“Du’s pairwise” are the short term of Du’s deployment knowl-
edge scheme and Du’s pairwise key scheme. “Nor” means Nor-
mal distribution.

given 200 compromised nodes, our scheme reveals at most 12.69% of links, compared with

24.44% in Du’s deployment knowledge scheme and 32.99% in the basic scheme. At the same

time, our scheme only has M = 100, but Du’s deployment knowledge scheme requires M = 140

and the basic scheme M = 200. Firstly, we should thank Blom’s scheme, which benefits our

scheme in two aspects: (1) all in-group links are distinct, so in our scheme no additional in-

group links exist no matter how many nodes are compromised; and (2) given that the number

of compromised nodes is smaller than a threshold value, no additional inter-group links will

be revealed. Hence, our scheme outperforms others in terms of global security. Secondly, by

utilizing deployment knowledge, we drastically reduce the potential number of neighbors for

each node. Therefore, in our scheme nodes can use their memory more efficiently such as to

achieve high connectivity without storing too much secret information. Since the amount of

secret information stored in nodes is reduced, our scheme reveals less additional links given

that the same number of nodes are compromised.

Figure 3.8 also plots the curve of Du’s pairwise key scheme [22], which achieves perfect

www.manaraa.com

67

security when no more than 250 nodes are compromised. However, if more than 300 nodes are

compromised, almost all links are revealed. We did not plot the curve of Liu’s polynomial-based

key pre-distribution scheme [52, 53], because the authors did not provide data of their scheme

for achieving the same connectivity as in our simulation. However, we find that this scheme

has a threshold property similar to that of Du’s pairwise key scheme. Observing the curve of

L = 2.5 (we use the same cell-size/transmission range ratio in our simulation) shown in Figure

6(b) of [52], we see that all links are revealed when more than 500 nodes are compromised.

Compared with Du’s and Liu’s schemes, our scheme is also based on Blom’s scheme, (where

the bivariate polynomials used in Liu’s scheme is a special form of Blom’s scheme), but our

scheme has a smoother curve in terms of security, that is, it never allows the whole network to

be compromised.

Figure 3.8 also shows that our scheme under normal distribution is not as good as under

uniform distribution. Under normal distribution, more nodes spread into neighbor grids and

form more inter-group links, which increases the fraction of inter-group links compromised.

Although nodes under uniform distribution perform better in terms of security, they generate

less inter-group links. It is not good for routing data across groups, because less nodes are

used to forward inter-group communications and their energy will be consumed up very quickly.

More severely, adversaries are able to break the whole network more easily by compromising

all nodes responsible for inter-group communications. Thus, deploying nodes under normal

distribution is still useful.

3.6.4 Simulation Study on Connectivity

We list the connectivity of the variants of our scheme and others in Table 3.3. In our

scheme, we assume that sensor nodes are deployed in hexagon grids. In this table, the variants

are listed in the increasing order of connectivity. The general observation of these variants

is that the larger the value of w and the smaller the value of b, the higher the connectivity

provided by our scheme. Explanation to this observation can be found in section 3.3.4.

Table 3.3 also shows that our scheme outperforms others in terms of connectivity with even

www.manaraa.com

68

Table 3.3 Comparison of connectivity among various schemes

Scheme Connectivity (Pc)
q-composite scheme (q = 2,M = 200) 0.9358

Basic scheme (M = 100) 0.9867
Basic scheme (M = 200) 0.9999

Du’s deployment knowledge scheme (M = 100) 0.9988
Du’s deployment knowledge scheme (M = 140) 0.9999

Our scheme (b = 7, w = 1,M = 100) 0.9969
Our scheme (b = 3, w = 1,M = 100) 0.9977
Our scheme (b = 2, w = 1,M = 100) 0.9978
Our scheme (b = 7, w = 2,M = 100) 0.9993
Our scheme (b = 3, w = 2,M = 100) 0.9996
Our scheme (b = 2, w = 2,M = 100) 0.9999
Our scheme (b = 7, w = 3,M = 100) 0.9999
Our scheme (b = 3, w = 3,M = 100) 0.9999

Our scheme (b = 7, w = 4 ∼ 7,M = 100) 1

smaller memory space. For example, to achieve Pc = 0.9999, we only need to set M = 100

for variants of our scheme, whereas the basic scheme and Du’s deployment knowledge scheme

require M = 200 and M = 140. q-composite scheme produces the lowest connectivity even

with memory of size M = 200. (Note: Our simulation (which is not listed in the table) even

shows that when q = 2 and M = 100, q-composite scheme has a connectivity less than 0.01,

which means the deployed network is completely partitioned.)

3.6.5 Impact of Grid Size

In this section, we study impact of grid size on the variants of our scheme in terms of global

security. In this study, sensor nodes are also deployed in hexagon grids. We define l = a · σ,

that is, given σ, a determines the grid size in our deployment.

Figure 3.9 plots the fraction of links compromised as a function of a, given that 200 nodes

are compromised. In the legend of this figure, the variants are listed in the decreasing order

of the fraction. For example, method (b = 7, w = 7) is on the top of the list, so it has the

highest fraction and hence performs worst in terms of global security. We observe that the

order of variants listed in the legend of Figure 3.9 is reverse in Table 3.3, which implies that

www.manaraa.com

69

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Grid size (a)

F
ra

ct
io

n
of

 li
nk

s
co

m
pr

om
is

ed

(b=7,w=7)
(b=7,w=6)
(b=7,w=5)
(b=3,w=3)
(b=7,w=4)
(b=2,w=2)
(b=3,w=2)
(b=7,w=3)
(b=2,w=1)
(b=3,w=1)
(b=7,w=2)
(b=7,w=1)

Figure 3.9 Global security: the fraction of links compromised as a function
of grid size, with 200 compromised nodes randomly distributed
over the whole network. In our scheme, we set M = 100. In the
legend, the variants of our scheme are listed in the decreasing
order of the fraction.

connectivity and global security conflict with each other.

Observing the variants in Figure 3.9, we can divide them into three categories:

1. Method (b = 3, w = 2) to (b = 7, w = 1), the last six variants on the name list of Figure

3.9. In the variants of this category, fraction of links compromised decreases gradually

as the value of a is getting bigger.

2. Methods (b = 3, w = 3), (b = 7, w = 4) and (b = 2, w = 2), the forth to sixth variant

on the name list of Figure 3.9. Their fraction first increases when a is not too big, then

goes down gradually with the increase of a.

3. Method (b = 7, w = 7), (b = 7, w = 6) and (b = 7, w = 5), the first three variants on the

name list of Figure 3.9. Their fraction grows up rapidly on both ends of curve, when the

value of a is too small or too big.

In the following paragraphs, we explain why these categories perform so differently.

www.manaraa.com

70

3.6.5.1 Why fraction decreases gradually

Typically, fraction of links compromised decreases with a increasing. It happens in all

variants, especially in those of the first category. Our explanation is as follows: Under nor-

mal distribution, most nodes of each group reside within a circle area of radius 3σ around

their deployment point. When σ is fixed and a becomes bigger, every grid is getting larger.

Especially, when a approaches 6, most nodes of a group are located in their own grid and

the deployed network becomes partitioned. In this process, more and more in-group links are

formed, while inter-group links become contrary. In our scheme, in-group links are distinct and

compromised links only come from inter-group ones, therefore, fraction of links compromised

decreases gradually.

3.6.5.2 Why fraction increases with a

In the second and third categories, fraction of variants grows up when the value of a

increases, as long as it is not too big. This is due to more and more B matrices broken.

Let us choose method (b = 7, w = 7) as example for demonstration. In Figure 3.10, we

plot the number of B matrices broken as well as that in total, with various values of a and

200 nodes compromised. It shows that when a is not too big, i.e., less than 3, more and

more B matrices are broken with the increase of a. First, let us see why some B matrices

are broken. For example, when a = 2, we have 126 groups in total. Given that 200 nodes

are compromised, each group will have 200
126 ' 1.5 nodes compromised in average. Since each

matrix B may be shared by up to 7 groups, it will have 1.5 × 7 ' 10.5 rows compromised in

average. Meanwhile, we calculate security threshold from equation (3.3) as λ = 100
7+1 − 1 ' 11.

This value of λ (i.e., 11) is quite close to the average number (i.e., 10.5) of rows compromised

in each matrix B, thus, a matrix is very possible to be broken. As a result, some B matrices

get broken. Then, if a becomes bigger, we will have less groups and hence each group will have

more nodes compromised. Equivalently, each matrix B will have more rows compromised and

more B matrices will be broken. That is why fraction of links compromised grows up with a.

Further increasing the value of a has two results: (1) almost all B matrices will be broken; and

www.manaraa.com

71

0

50

100

150

200

250

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Grid size (a)

N
um

be
r

of
 m

at
ri

ce
s

B

Number of matrices B broken

Number of matrices B in total

Figure 3.10 Comparison between the number of matrices B broken and the
total number of matrices B for our method (b = 7, w = 7) as
grid size increases. Sensor nodes (including 200 compromised
nodes) are deployed into hexagon grids, and the compromised
nodes are randomly distributed over the whole network.

(2) the total number of B matrices will decrease. Consequently, inter-group links are less and

less, which keeps on decreasing fraction of links compromised.

Carefully observing the curves of the second and third categories in Figure 3.9, we can see

impact of w on the fraction. Given a fixe value of b (i.e., 7), when w becomes bigger, the

fraction increases earlier (i.e., when a is smaller) and more rapidly. From equation (3.3), we

know that the bigger the value of w, the smaller the value of λ. Hence, a matrix B is more

likely to be broken. In other words, more matrices B will be broken. So, the fraction of the

variants of a smaller w increases earlier and more rapidly.

3.6.5.3 Why fraction grows up again with a

In the variants of the third category, when a is large enough (i.e., greater than 4.5), fraction

grows up again. This is because more and more matrices A will be broken.

In this scenario, almost all matrices B have been broken, but we can carry out similar

analysis to matrices A. Let us still consider method (b = 7, w = 7). For example, we have

www.manaraa.com

72

22 groups in total when a = 5. So, each group will have 200
22 ' 9 nodes compromised in

average. Since each node contains only one row from matrix A, the average number of rows

compromised of each matrix A is also 9, which is close to λ = 11 of this variant. Therefore,

some matrices A are likely to be broken. when a is getting bigger, more and more matrices

A will be broken. This is why fraction of the variants of the third category grows up with a

rapidly, when a is sufficiently big. For those variants of other categories, threshold λ is too big

for some matrix A to be broken, given that only 200 nodes are compromised. So, we cannot

observe fraction in those categories increase twice, even when a becomes very big.

3.6.6 Impact of Estimation Error

We assume that nodes’ location satisfies a normal distribution, for example, when the nodes

are deployed from a helicopter. It may be very hard to obtain an accurate estimation to the

distribution. Here, we study the impact of error in the estimation of distribution parameter

such as variance. Let σ denote the true value of variance and σ′ denote the estimated value. We

define σ′ = eσ, where e determines the amount of estimation error. We consider e ∈ [0.5, 1.5],

which implies there exists up to 50% of error in estimation.

First, we study the impact on global security. Assume sensor nodes are deployed into

hexagon grids. As we already discussed, the grid size in this case should be set as l = 2
√

3σ.

However, due to the estimation error, we get l = 2
√

3σ′ = 2
√

3e · σ. Meanwhile, we already

define l = a · σ, so we derive that a = 2
√

3e. Thus, studying the impact of estimation error

with e ∈ [0.5, 1.5] is equivalent to studying the impact of grid size with a = 2
√

3e ∈ [1.7, 5.2],

which has been shown in Figure 3.9. We find that even in the worst case (e = 0.5), our scheme

(method (b = 2, w = 2)) allows only 18% of links compromised, which is better than 24% of

Du’s deployment knowledge scheme and 32% of the basic scheme.

Figure 3.11 depicts the connectivity of our scheme as a function of estimation error. We

only show the results of three variants that include methods (b = 7, w = 1), the worst one to

achieve some desired connectivity. Figure 3.11 shows that even when we under-estimate the

distribution variance by 50%, method (b = 7, w = 1) only causes a decrease in connectivity by

www.manaraa.com

73

0.984

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Estimation error (e)

C
on

ne
ct

iv
it

y

(b=2, w=2)

(b=7, w=2)

(b=7, w=1)

Figure 3.11 Connectivity of some variants of our scheme as a function of
estimation error, when sensor nodes are deployed into hexagon
grids. In our scheme, we set M = 100.

at most 1.4%. Meanwhile, other variants perform much better. So, we conclude that estimation

error has little impact on our scheme in terms of connectivity. Moreover, we observe that the

connectivity does not go down as quickly as we thought, even when we over-estimate the

distribution variance by 50%. It is because we ignore the impact of transmission range when

deriving l = 2
√

3σ. In fact, the value of transmission range is close to that of σ. Thus, when

we have a large grid size due to over-estimating the variance, the nodes of each group can still

establish secure links with a lot of others from neighbor groups.

3.7 Conclusion

We propose a key management scheme using deployment knowledge for establishing pair-

wise keys between sensor nodes. We study network connectivity based on geometric random

graph model and show how to compute the required transmission range for achieving some

desired connectivity. Simulation results show that our scheme outperforms others in terms of

resilience against node capture. Meanwhile, it achieves a higher connectivity with a shorter

transmission range and a lower memory requirement.

www.manaraa.com

74

CHAPTER 4 ENHANCING AUTHENTICITY AND AVAILABILITY:

Filtering False Data Injection and DOS Attacks in Wireless Sensor

Networks

4.1 Introduction

Wireless sensor networks consist of a large number of small sensor nodes equipped with

limited computation capacity, restricted memory space, limited power resource and short-

range radio communication device. In military applications, sensor nodes may be deployed in

a hostile environment such as battlefield to report the activities of enemy forces to the base

station. However, they suffer various malicious attacks. One is false report injection attack

[98], in which an adversary can inject false data reports containing non-existent events or faked

readings via compromised nodes. It not only causes false alarms at the base station, but also

drains out the limited energy of forwarding nodes. On the other hand, the adversary may also

launch various DoS attacks to legitimate reports. In selective forwarding attacks [66], they

selectively drop the reports. In report disruption attacks [85], they intentionally contaminate

the authentication information (e.g., MACs) in the reports to make them filtered out by other

nodes. Therefore, it is important to design a dynamic quarantine scheme to detect and filter

these attacks or mitigate their impact to the functionalities of wireless sensor networks.

Recently, several schemes such as SEF [86], IHA [98], CCEF [84], LBRS [85] and LEDS [66]

have been proposed to combat false report injection attacks and/or DoS attacks. However, they

have different limitations. SEF is independent of network topology, but it has limited filtering

capacity and cannot prevent compromised nodes from impersonating others. IHA requires

that sensing nodes periodically establish multi-hop pairwise keys with others. Moreover, it

needs a fixed path between the base station and any cluster head for transmitting messages

www.manaraa.com

75

in both directions, which cannot be guaranteed by some routing protocol such as GPSR [43]

or the dynamic network topology. CCEF requires the fixed paths as IHA does, and even

expensive public-key operations. Most severely, it does not support en-route filtering. LBRS

and LEDS both utilize location-based keys for filtering false reports. LBRS introduces report

disruption attacks, but does not give any concrete solution. LEDS tries to address selective

forwarding attacks by allowing a whole cell of nodes to forward one report, which incurs high

communication overhead. In addition, both schemes require that sensor nodes determine their

locations in a short secure time slot. However, this assumption is not practical, because many

localization approaches [12, 33, 58] take quite long and are not secure [14, 48, 49].

In this work, we propose a dynamic en-route scheme for filtering false report injection at-

tacks and DoS attacks in wireless sensor networks. In our scheme, sensor nodes are organized

into clusters and a legitimate report is validated by multiple message authentication codes

(MACs) that are produced by sensing nodes using their own authentication keys. The authen-

tication keys of each node form a hash chain. Before sending reports, nodes disseminate their

keys to forwarding nodes using Hill Climbing approach. Then, they send the reports in rounds.

In each round, every sensing node endorses the reports using a new key, and then disclose the

key to forwarding nodes. Using the disseminated and disclosed keys, the forwarding nodes can

verify the validity of reports. Our scheme allows each node to monitor its downstream nodes

by overhearing their broadcast, which prevent the reports from being modified. Report for-

warding and key disclosure are repeated by the forwarding node at each hop, until the reports

are dropped or delivered to the base station.

Compared with existing ones, our scheme has the following advantages:

• Each node has its own authentication keys, which makes the uncompromised node not

to be impersonated. The compromised nodes can only report fake or non-existent events

occurring in the clusters that they belong to. Once they are detected, the base station

can easily quarantine the infected clusters.

• We design Hill Climbing approach for key dissemination, which achieves that the nodes

closer to clusters hold more authentication keys than those closer to the base station do.

www.manaraa.com

76

This approach not only balances the memory requirement among nodes, but also makes

false reports dropped as early as possible.

• Keys are disseminated to the forwarding nodes along multiple paths from a cluster to the

base station, which not only reduces the cost to maintain key information in forwarding

nodes in highly dynamic networks, but also mitigates the impact of selective forwarding

attacks.

• We exploit the broadcast nature of wireless communication and let each node monitor

its downstream nodes or neighbors. This prevents compromised nodes from launching

DoS attacks by intentionally contaminating the reports or other control messages.

Simulation results show that, when compared with existing ones, our scheme drops false reports

earlier even with a lower memory requirement, and can better deal with the dynamic sensor

networks.

The rest of the chapter is organized as follows: We introduce some routing protocols de-

signed for sensor networks in section 4.2 and define system model and goals in section 4.3.

Then, we present our scheme in section 4.4, analyze its performance in section 4.5, and discuss

simulation results in section 4.6. Finally, we summarize the advantages and the limitations of

our scheme in section 4.7.

4.2 Routing Protocols for Sensor Networks

Before discussing our scheme, we first introduce some routing protocols designed for wireless

sensor networks, because these protocols determine how sensor nodes exchange and distribute

information and greatly affect the design of our scheme for filtering false reports.

Several distributed distance-vector based routing protocols [79] have been designed and

implemented within TinyOS [73]. In these protocols, each node periodically broadcasts its

routing cost to the sink, e.g., the base station, and builds a routing table according to the

information received from its neighbors. Route is selected based on the routing metrics such

as hop count or link quality.

www.manaraa.com

77

GPSR [43] and GEAR [87] are location-aware routing algorithms, which assume each node

knows its location. Route is determined as the neighbor with the shortest distance to the sink.

If all neighbors are farther than itself, the forwarding node would use a right-hand rule to

select the route. In GEAR, the energy level of each neighbor is also taken into consideration

for route selection. (Note: in GPSR/GEAR, the path between two nodes is not bidirectional,

i.e., the reports from node i to j may choose a different path from that used by the reports

from node j to i.)

Braginsky et al. proposed Rumor [10] routing protocol, in which when a sensing node

detects some event, it may create and send out an agent that is a message containing routing

information about the event. The agent follows a straight path leaving the sensing node and is

associated with a maximum TTL. Each node passed by the agent learns the route to the event.

When the reports about some interested event are needed, the base station sends out a query

message. The movement pattern of a query message is similar to that of an agent. When the

query message is delivered to a node who knows the route to the event, a path between the

base station and the sensing node (the event) can be established.

Note: Our scheme is not limited to these routing protocols and can take advantage of others

for wireless sensor networks.

4.3 Problem Statement

4.3.1 System Model

We model the communication region of wireless sensor nodes as a circle of radius r that

is called transmission range. We also assume that the links between neighbor nodes are bi-

directional. (Note: If some links are not bi-directional, sensor nodes just ignore them.) That

is, if the distance between two nodes is no more than r, they are the neighbor of each other

and can communicate with each other.

Wireless sensor nodes may be deployed into some target field to detect the events occurring

within the field. For example, in a military application, they are deployed to a battle field to

detect the activities of enemy forces. We assume that sensor nodes form a number of clusters

www.manaraa.com

78

after deployment, each containing at least n nodes. In each cluster, one node is randomly

selected as cluster head. To balance energy consumption, all nodes within a cluster take turns

to serve as the cluster head. (Note: there is no difference between a cluster head and a normal

node physically. A cluster head also senses events as a normal node.)

Given that an event occurs, e.g., tank movement, we assume that at least t nodes can detect

it simultaneously, where t is a pre-defined system parameter. These nodes detecting the event

are called sensing nodes. They generate sensing reports and broadcast to the cluster head.

Then, the cluster head aggregates these sensing reports into aggregated reports, and forward

through some forwarding nodes to the base station.

Figure 4.1 illustrates the organization of sensing nodes in wireless sensor networks. In

the figure, CH and BS denote Cluster Head and Base Station respectively. u1 ∼ u5 are

forwarding nodes, and v1 ∼ v8 are sensing nodes (they can also serve as forwarding nodes for

other clusters). The black dots represent compromised nodes, which are located either in the

clusters or en-route.

u5

u4

u3 u2 u1

v4

v1

v3

v2
CH1 BS

Cluster

v6

v5 CH2

Cluster

v7
v8

Figure 4.1 Sensor nodes are organized into clusters. The big dashed cir-
cles outline the regions of clusters. CH and BS denote Cluster
Head and Base Station respectively. u1 ∼ u5 are forwarding
nodes, and v1 ∼ v8 are sensing nodes (they can also serve as
forwarding nodes for other clusters). The black dots represent
the compromised nodes, which is located either within the clus-
ters or en-route.

Note: we regard data reporting as a high layer application and ignore the impact of link

quality to the delivery of reports. We assume that there exist some lower layer protocols such

www.manaraa.com

79

as routing or MAC layer protocols, which are able to handle the failures or collisions in wireless

communication by utilizing the mechanisms of acknowledgement and retransmission.

We consider the case that the topology of wireless sensor networks is highly dynamic,

because the sensor nodes are prone to failures and need to switch their state between active

mode and sleeping mode for saving energy. Thus, two messages generated by the same cluster

may be delivered along different paths to the base station. Moreover, we assume the messages

transmitted from a cluster head to the base station and those from the base station to the

cluster head do not necessarily follow the same path, because the underlying routing protocols

such as GPSR [43], GEAR [87] or Rumor[10] that are designed for sensor networks cannot

make this guarantee.

4.3.2 Threat Model

Typically, sensor nodes are not tamper-resistant and can be compromised by adversaries.

We assume that each cluster contains at most t−1 compromised nodes, which may collaborate

with each other to generate false reports by sharing their secret key information. Here, t is a

pre-determined system parameter, which implies the extent of security that a filtering scheme

can provide.

In this work, we consider the following attacks that the adversaries can launch through the

compromised nodes.

• False report injection attacks: The compromised nodes can send false reports to the

base station by pretending to observe some forged or non-existent events within the

clusters that they belong to. Moreover, given sufficient secret information, they may

even impersonate some uncompromised nodes of other clusters and report the forged

events “occurring” within those clusters. These false reports not only cause false alarm

at the base station, but also drain out the limited energy of forwarding nodes.

• DoS attacks: The compromised nodes can prevent the legitimate reports from being

delivered to the base station, by either selectively dropping some reports (called selective

forwarding attacks [66]), or intentionally inserting invalid authentication information into

www.manaraa.com

80

the reports to make them filtered by other forwarding nodes (called report disruption

attacks [85]).

4.3.3 Goals

We require that each report be attached with t message authentication codes (MACs)

produced by different sensing nodes with their authentication keys. A false report is defined

as one that contains less than t valid MACs. Here, the selection of t determines a tradeoff

between security and overhead. To tolerate more compromised nodes, we have to increase the

length of reports.

As we discussed, the adversaries can launch either false report injection attacks or DoS

attacks. Our objective is to design a scheme to detect these attacks and/or mitigate their

impact to wireless sensor networks. Compared to existing schemes, we expect our scheme to

achieve the following goals:

1. It can offer a higher filtering capacity and drop false reports earlier with acceptable

memory requirement, where the filtering capacity of our scheme is defined as the average

number of hops that a false report is allowed to travel.

2. It can address the report disruption attacks or mitigate the impact of the selective for-

warding attacks.

3. It can accommodate highly dynamic sensor networks and does not require frequent path

establishment or reparation.

4. It should not rely on any fixed paths between the base station and cluster heads for

transmitting messages in both directions.

5. It should prevent the uncompromised nodes from being impersonated. So, when the

compromised nodes are detected, the infected clusters can be easily quarantined by the

base station.

www.manaraa.com

81

4.4 Our Scheme

4.4.1 Overview

When some event occurs with some cluster, the cluster head collects sensing reports from

the sensing nodes and aggregates them into aggregated reports. Then, it and forwards the

aggregated reports to the base station through forwarding nodes. In our scheme, each sensing

report contains one MAC that is produced by a sensing node using its authentication key

(called auth-key for short), while each aggregated report contains t distinct MACs, where t is

the maximum number of compromised nodes existing in each cluster.

In our scheme, each node possesses a sequence of auth-keys that form a hash chain. Be-

fore sending the reports, the cluster head disseminates the first auth-key of all nodes to the

forwarding nodes along multiple paths to the base station. The reports are organized into

rounds, each containing a fixed number of reports. In every round, each sensing node chooses

a new auth-key to authenticate its reports. To allow forwarding nodes to verify the reports, the

sensing nodes discloses their auth-keys in each round. Meanwhile, to prevent the forwarding

nodes from abusing the disclosed keys, a forwarding node can receive the disclosed auth-keys,

only after its upstream node overhears its broadcast of the reports. Receiving the disclosed

keys, each forwarding node verifies the validity of the reports, and informs its next-hop node to

forward or drop the reports based on the verification result. If the reports are valid, it discloses

the keys to its next-hop node after overhearing. The process of verification, overhearing and

key disclosure is repeated by the forwarding node at every hop, until the reports are dropped

or delivered to the base station.

Specifically, our scheme can be divided into three phases, key pre-distribution phase, key

dissemination phase and report forwarding phase. In the key pre-distribution phase, each node

is preloaded with a distinct seed key from which it can generate a hash chain of its auth-keys.

In the key dissemination phase, the cluster head disseminates each node’s first auth-key to

the forwarding nodes, which allows them to be able to filter false reports later. In the report

forwarding phase, each forwarding node verifies the reports using the disclosed auth-keys and

www.manaraa.com

82

disseminated ones. If the reports are valid, the forwarding node discloses the auth-keys to its

next-hop node after overhearing that node’s broadcast. Otherwise, it informs the next-hop

node to drop the invalid reports. This process is repeated by every forwarding node until the

reports are dropped or delivered to the base station.

Figure 4.2 demonstrates the relationship between the three phases of our scheme. Key

pre-distribution is performed before the nodes are deployed, e.g., it can be done offline. Key

dissemination happens before the sensing nodes begin to send the reports. It may be executed

periodically depending on how dynamically the topology is changed, and each time the latest

(unused) auth-key of sensing nodes will be disseminated. Report forwarding occurs at each

forwarding node and in each round.

For clusters

For forwarding nodes

Key
Pre-Distribution

Key
Dissemination

Report
Forwarding

Figure 4.2 The relationship between three phases of our scheme. Key
pre-distribution is preformed only once. Key dissemination is
executed by clusters periodically. Report forwarding happens
at each forwarding node in every round.

4.4.2 Detailed Procedures

In the section, we discuss the procedure of each phase in detail.

4.4.2.1 Key Pre-Distribution Phase

Key pre-distribution needs to be performed only once. It consists of two steps:

Step1: Each node is preloaded with a distinct seed key. From the seed key, it can generate

a sequence of auth-keys using a common hash function h. Thus, each node’s auth-keys form

a hash chain. Let m denote the length of hash chain. Given node vi and seed key kvim, its

www.manaraa.com

83

auth-keys are calculated as follows:

kvim−1 = h(kvim),

kvim−2 = h(kvim−1) = h2(kvim),

... (4.1)

kvi1 = hm−1(kvim),

where vi is the node’s index, and h2(kvim) means hashing kvim twice. The first key of the chain

is kvi1 , which should also be used the first, although it is the last one generated from the seed

key. We assume that the base station is aware of each node’s seed key, so that the adversaries

cannot impersonate the uncompromised nodes.

Step2: Besides the seed key, each node is also equipped with l + 1 secret keys, where l

keys (called y-keys) are randomly picked from a global key pool (called y-key pool) of size v,

and the rest one (called z-key) is randomly chosen from another global key pool (z-key pool)

of size w. Among n nodes of a cluster, we assume that there are at least t nodes each having

a distinct z-key.

Figure 4.3 shows the auth-keys and secret keys possessed by sensor nodes. For example,

node vi’s auth-keys are kvi1 , · · · , kvim, and its secret keys are yvi1 , · · · , y
vi
l and zvi . If vi has

sufficient memory, it can store all of its auth-keys in memory. Otherwise, it only stores the

seed key and generates an auth-key every time when necessary.

4.4.2.2 Key Dissemination Phase

In our scheme, the cluster head discloses the sensing nodes’ auth-keys after sending the

reports of each round. However, it is vulnerable to such an attack that a malicious node can

pretend to be a cluster head and inject arbitrary reports followed by falsified auth-keys. To

prevent this attack, we enforce key dissemination, that is, the cluster head should disseminate

the first auth-keys of all nodes to the forwarding nodes before sending the reports in the first

round. By using the disseminated keys, the forwarding nodes can verify the authenticity of the

disclosed auth-keys, which is further used to check the validity and integrity of the reports.

www.manaraa.com

84

�� �� ����

����

����� � ��� ���� ��

	������

����
��������������

��

����� � ������

����

�������

	�

	

	�

���������������
�� �� ��

������������
�� ��

���������������
�� �� ��

�������������
�� ��

� �

�� ��

���������������
	
 	
 	

�������������
	
 	

�����������	
���	

����������
���	�

�������������������	

����� � ������

����� � ������ ����� � ������

Figure 4.3 The detailed procedure of each phase. In the key pre-distri-
bution phase, each node is preloaded with l + 1 secret keys
y1, · · · , yl, and z, and generates a hash chain of auth-keys
k1, · · · , km from the seed key km. In the key dissemination
phase, the cluster head disseminates the auth-keys of all nodes
through message K(n) to q downstream neighbor nodes. Every
downstream node may decrypt and obtain some auth-keys from
K(n), then, it forwards K(n) to q more downstream neighbor
nodes, which repeat the same decrypting and forwarding op-
erations. In the report forwarding phase, each forwarding node
en-route performs the following steps: (1) It receives the reports
from its upstream node. (2) If it receives confirmation message
OK, then forwards the reports to its next-hop node. Otherwise,
it discards the reports. (3) It receives the disclosed auth-keys
within message K(t) and verifies the reports using the disclosed
keys. (4) It informs its next-hop node the verification result.

www.manaraa.com

85

Key dissemination should be performed periodically in case that some forwarding nodes

aware of the disseminated keys become failed, especially when the network topology is highly

dynamic. In this case (of re-dissemination), the first unused, instead of the first, auth-keys will

be disseminated. The first unused auth-key of a node is called the current auth-key of that

node. When none of a node’s auth-keys has ever been used, the current auth-key is just the

first auth-key of its hash chain.

The detailed procedure of the key dissemination phase is as follows:

Step1: Each node constructs an Auth message, which contains l + 1 copies of its current

auth-key, each encrypted using one of its secret keys. For example, given node vi, its Auth

message is:

Auth(vi) = { vi, ji, id(yvi1), {id(yvi1), kviji }yvi1 ,

· · · , id(yvil), {id(yvil), kviji }yvil , (4.2)

id(zvi), {id(zvi), kviji }zvi },

where ji is the index of its current auth-key. (Note: in the first dissemination, ji = 1.) id(yvi1)

denotes the index of yvi1 within the y-key pool, and {·}yvi1 means an encryption operation using

key yvi1 . In equation (4.2), the purpose of encrypting the index of a secret key along with an

auth-key is to guarantee the correct decryption.

Step2: The cluster head collects the Auth messages from all nodes and aggregates them

into message K(n):

K(n) = { Auth(v1), · · · , Auth(vn) }, (4.3)

where v1, · · · , vn are all nodes of the cluster.

Step3: The cluster head chooses q (q > 1) forwarding nodes from its neighbors and

forwards them message K(n). These q nodes may be selected based on different metrics such

as the distance to the base station, the link quality, the amount of energy available, the speed

of energy consumption, or a combination of all. How to select the metric is application specific

and out of the scope of this work. Anyway, the purpose is to find those nodes that can best

forward the reports to the base station. Thus, when some downstream neighbor node dies, the

www.manaraa.com

86

reports can be easily switched to another node without re-disseminating K(n).

Step4: When a forwarding node receives K(n), it performs the following operations:

1. It verifies the validity of K(n) to see if K(n) contains at least t distinct indexes of z-keys.

If not, this K(n) is assumed to be forged and should be dropped.

2. It checks the indexes of secret keys in K(n) to see if it has any shared key. If finding a

shared secret key, it decrypts the corresponding auth-key using that key and stores the

auth-key in memory. Obviously, it must assure that the decryption key is the correct one

by checking the index encrypted along with the auth-key. Otherwise, it discards K(n).

Note: we have difference concerns to the use of y-keys and z-keys, although forwarding

nodes can use both of them to decrypt auth-keys from K(n). In our scheme, y-keys are

mainly used to control how many auth-keys a forwarding node can obtain. Meanwhile,

each node can use the only z-key it possesses to verify the validity of K(n). Since each

node has multiple y-keys, the number of y-keys shared by several compromised nodes

can easily overwhelm that of distinct y-keys each report may have. Hence, y-keys cannot

be used for verification.

3. K(n) does not need to be disseminated to the base station. We define hmax as the

maximum number of hops that K(n) needs to be disseminated. (Note: we will study

how to determine hmax in section VI.) If the forwarding node finds that K(n) has already

been disseminated by hmax hops, it discards K(n). Otherwise, it forwards K(n) to other

q downstream neighbor nodes, which are selected using the same metric as the cluster

head uses.

Each node receiving K(n) repeats these operations, until K(n) gets to the base station or has

been disseminated hmax hops. Figure 4.3 illustrates the dissemination of K(n) from the cluster

head to forwarding nodes.

When the sensing reports are generated continuously and the network topology is highly

dynamic, key dissemination should be performed periodically in case that all of q selected

downstream nodes of some node die or fail. This period is determined based on the frequency

www.manaraa.com

87

of topology changing. The more frequently the topology changes, the more often the cluster

head should disseminate auth-keys. We do not discuss how to determine the period here,

because it is out of scope of this work.

4.4.2.3 Hill Climbing

We propose two important observations. First, when multiple clusters disseminate keys at

the same time, some forwarding nodes may need to store the auth-keys for different clusters.

The nodes closer to the base station need to store more auth-keys than others (typically those

closer to clusters) do, because they are usually the hot spots and have to serve more clusters.

For example, in Figure 4.1, u3 serves two clusters and u1 serves only one, so u3 has to store

more auth-keys. Second, the false reports are mainly filtered by the nodes closer to clusters,

while most nodes closer to the base station have no chance to use the auth-keys they stored

for filtering. If we could let the nodes closer to clusters hold more auth-keys, the false reports

can be dropped earlier. Therefore, to balance the memory requirement of nodes and provide

a higher filtering capacity, we propose Hill Climbing approach, which achieves that the nodes

closer to clusters hold more auth-keys than those closer to the base station do.

Hill Climbing contains two variants, one for the key pre-distribution phase and the other

for the key dissemination phase.

The first variant is: In Step2 of the key pre-distribution phase, instead of picking y-keys

from a global key pool, each node selects each of its y-keys randomly from an independent hash

chain. Specifically, the original y-key pool is partitioned into l equal-sized hash chains, each

containing v
l keys that are generated from a distinct seed key. As shown in Figure 4.4, the first

hash chain contains keys y1
1, · · · , y1

u, where u = v
l and y1

u is the seed key. Similarly, yl1, · · · , ylu

belong to the last chain. Node vi chooses each of its y-keys yvi1 , · · · , y
vi
l from a corresponding

chain, and so does node uj .

It is easy to know that a forwarding node holding a larger index y-key can always decrypt

a sensing node’s auth-key from K(n), as long as the sensing node’s y-key has a smaller index.

Inspired by this, we propose the second variant: In Step4 of the key dissemination phase,

www.manaraa.com

88

�� �� ����

������������� � �
�� �� ��

������������	
�� ��

�� ���������� � �
�� �� ��

������������	
�� ��

��
�

��
�

��
�

��
�

����

Figure 4.4 Key pre-distribution of Hill Climbing. Every node picks each of
its y-keys randomly from a distinct hash chain whose length is
u = v

l , while the z-key is still selected from the global key pool,
instead of from a hash chain.

after a forwarding node decrypts an auth-key from K(n), it updates K(n) by encrypting the

auth-key using its own y-key and then forwards the updated K(n) to its downstream neighbor

nodes. For example, if K(n) contains { id(yvi1), kviji }yvi1 (as shown in equation (4.2)) and

id(yuj1) > id(yvi1), uj substitutes { id(yuj1), kviji }yuj1
for { id(yvi1), kviji }yvi1 and then forwards the

new K(n) to q downstream neighbor nodes. By enforcing this substitution at every forwarding

node, the indexes of y-keys contained in K(n) will be increased gradually, just like climbing

hill. It becomes harder and harder for the nodes closer to the base station to decrypt the

auth-keys from K(n). Consequently, the nodes closer to clusters store more auth-keys, which

makes the false reports dropped earlier.

A simpler way to make downstream nodes obtain fewer auth-keys is to discard the auth-

keys obtained by forwarding nodes with a gradually increasing probability as they approach

to the base station. However, Hill Climbing has two advantages: (1) It makes upstream

nodes get more auth-keys than no only downstream nodes but also the upstream nodes at

the same positions without using Hill Climbing. (2) It eliminates redundant decryptions and

verifications, because when an auth-key has been decrypted by a upstream node, it is not

necessary for a downstream node to decrypt that auth-key (or use that auth-key to verify a

report) again.

www.manaraa.com

89

4.4.2.4 Report Forwarding Phase

In this phase, sensing nodes generate sensing reports in rounds. Each round contains a

fixed number of reports, e.g., 10 reports, where this number is pre-determined before nodes are

deployed. In each round, every sensing node chooses a new auth-key, i.e., the node’s current

auth-key, to authenticate its reports.

Given node vi, its sensing report r(vi) is:

r(vi) = { E, vi, ji,MAC(E, kviji) }, (4.4)

where E denotes the event information, ji is the index of vi’s current auth-key, andMAC(E, kviji)

is the MAC generated from E using key kviji .

In each round, the cluster head generates the aggregated reports and forwards them to

next hop, i.e., one of its q selected downstream forwarding nodes. Then, it discloses the

sensing nodes’ auth-keys after overhearing the broadcast from the next-hop node. The reports

are forwarded hop-by-hop to the base station. At every hop, a forwarding node verifies the

validity of reports using the disclosed keys and informs its own next-hop node the verification

result. The same procedure is repeated at each forwarding node until the reports is dropped

or delivered to the base station.

Figure 4.3 depicts the detailed procedure, which consists of the following steps:

Step1: In each round, the cluster head collects the sensing reports from all sensing nodes

and generates a number of aggregated reports such as R1, R2, · · · . It sends these aggregated

reports and an OK message to next hop, uj . Each aggregated report should contain t MACs,

each from a sensing nodes that has a distinct z-key. For example, an aggregated report R looks

as follows:

R = { r(vi1), · · · , r(vit) }, (4.5)

where vi1 , · · · , vit denote t sensing nodes whose z-keys are different. Since every sensing node

reports the same event information E, only one copy of E is kept in the aggregated report R.

Step2: Receiving the aggregated reports and the OK message, uj forwards the aggregated

reports to next hop, uj+1. The cluster head overhears the broadcast of aggregated reports

www.manaraa.com

90

from uj .

Step3: Overhearing the broadcast from uj , the cluster head discloses the auth-keys to uj

by message K(t),

K(t) = { Auth(vi1), · · · , Auth(vit) }. (4.6)

K(t) contains the auth-keys of vi1 , · · · , vit . It has the same format as K(n), but only t auth-

keys.)

Step4: Receiving K(t), uj first checks the authenticity of the disclosed keys using the

disseminated ones that it decrypted from K(n) before. Then, it verifies the integrity and va-

lidity of the reports by checking the MACs of reports using the disclosed keys. The verification

process is as follows:

1. To verify the validity of K(t), uj checks if K(t) is in correct format and contains t distinct

indexes of z-keys. If not, it drops K(t).

2. To verify the authenticity of the auth-keys in K(t), uj checks if each auth-key it stored

can be generated by hashing a corresponding key in K(t) with certain number of times.

For example, suppose uj has already stored node vi’s auth-key kviα , and vi discloses a new

key kviβ in K(t). uj checks if β > α and kviβ = hβ−α(kviα). If not, kviβ is either replayed or

forged, and K(t) should be dropped. If K(t) is valid, uj stores kviβ , instead of kviα , in its

memory.

3. To verify the integrity and validity of reports R1, R2, · · · , uj checks the MACs in these

reports using the disclosed auth-keys that it decrypts from K(t).

Step5: If the reports are valid, uj sends an OK message to uj+1. Otherwise, it informs

uj+1 to drop invalid reports. (The negative message is not shown in Figure 4.3).)

Step6: Similar to Step2, uj+1 forwards the reports to next hop.

Step7: Similar to Step3, after overhearing the broadcast from uj+1, uj discloses K(t) to

uj+1.

Every forwarding node repeats Step4 to Step7 until the reports are dropped or delivered

to the base station.

www.manaraa.com

91

We exploit the broadcast nature of wireless communication. In our scheme, each node

monitors its next-hop node to assure no message is forged or changed intentionally.

4.5 Performance Analysis

4.5.1 Filtering capacity

Filtering capacity of our scheme is defined as the average number of hops that a false

report can travel. It is determined by the probability that a false report can be detected by

the forwarding node at every hop. For simplicity, we consider the worst case in which each

false report contains exactly one forged MAC. We define detecting probability as the probability

that a forwarding node has the valid auth-key to detect the forged MAC. Since a forwarding

node should decrypt the auth-key from K(n) or K(t), the detecting probability is equivalent

to the probability that a forwarding node has at least one shared secret key to decrypt the

auth-key.

Without using Hill Climbing in our scheme, each node randomly picks l y-key from a pool

of size v and one z-key from a pool of size w. The probability that two nodes share at least one

common y-key is 1 − (v−ll)

(vl) and that of sharing the same z-key is 1
w . Therefore, the detecting

probability is

p = 1−
(v−ll)
(vl)

+
1
w
− (1−

(v−ll)
(vl)

)
1
w

' 1−
(v−ll)
(vl)

, (4.7)

when 1
w is much smaller than 1− (v−ll)

(vl) . For example, if l = 2 and v = w = 20, then p ' 0.275.

Meanwhile, we also know that a forwarding node can decrypt and store np auth-keys for each

cluster in average.

When using Hill Climbing, each node picks l y-key from different hash chains. To decrypt

an auth-key of some sensing node, a forwarding node should have a shared z-key or at least one

y-key whose index is larger than that of the sensing node’s y-key. The probability of having

a y-key of larger index is 1
2 . However, if the forwarding node is i hops away from a cluster,

to decrypt an auth-key of some sensing node, it should have a y-key with its index greater

www.manaraa.com

92

than that of no only the sensing node, but also other i − 1 upstream forwarding nodes. This

happens with probability 1 − (1 − (1
2)i)l. Therefore, when using Hill Climbing, the detecting

probability of a forwarding node i hops away from the cluster is

pi = 1− (1− (
1
2

)i)l +
1
w
− (1− (1− (

1
2

)i)l
1
w

' 1− (1− (
1
2

)i)l, (4.8)

when 1
w is small. Averagely, the forwarding node stores npi auth-keys for the cluster. If l = 2,

v = w = 20 and i = 1, then pi = p1 ' 0.775, which is much larger than that without using

Hill Climbing.

Let P (h) denote the probability of filtering a false report within h hops, which is also the

fraction of false reports that can be filtered within h hops. When using Hill Climbing, we have

P (h) = 1−
h∏
i=1

(1− pi). (4.9)

Without using Hill Climbing, P (h) = 1− (1− p)h because pi is always equal to p.

Let Havg denote the average number of hops that a false report can travel. When using

Hill Climbing, we derive that

Havg =
∞∑
i=1

ipi

i−1∏
j=1

(1− pj), (4.10)

where pi
∏i−1
j=1(1−pj) denotes the probability that a false report is dropped at exactly the i-th

hop. Without using Hill Climbing, the forwarding node at every hop has the same detecting

probability p. In this case, we have

Havg =
∞∑
i=1

ip(1− p)i−1 =
1
p
. (4.11)

It indicates that a false report can travel averagely 1
p hops.

4.5.2 Energy Savings

To compare energy savings of various schemes, we adopt the same energy consumption

model used in SEF [86]. Let Lr denote the length of a normal report without using any

filtering scheme and L′r denote the length of an authenticated report attached with MACs.

www.manaraa.com

93

The amount of legitimate reports and false reports is 1 and β. Assume each report travels

H hops without using any filtering scheme and each node has a detecting probability p when

using a filtering scheme. As shown in SEF, the energy consumption for transmitting a normal

report is

e = LrH(1 + β), (4.12)

where a normal report is 24-byte long, that is,

Lr = 24× 8 = 192 bits. (4.13)

The energy consumption for transmitting an authenticated report is

E = L′r[H + β
H∑
h=1

hp(1− p)h−1]

' L′r(H + β
1
p

). (4.14)

In SEF, a key index is 10-bit long and the Bloom filter is 64-bit long. So,

L′r = 306 bits. (4.15)

In our scheme, each forwarding node forwards not only the report R, but also control

messages K(n), K(t) and OK. We have

L′r = LR + γ(LK(t) + LOK) + δLK(n), (4.16)

where LR, LK(n), LK(t) and LOK are the length of aggregated reports and that of the corre-

sponding control messages. γ denotes the ratio of the number of messages K(t) (or OK) over

that of reports, and and δ is the ratio for K(n). Assume each sensing node generates 10 reports

in each round and key dissemination is carried out every 10 rounds, then γ = 1
10 and δ = 1

100 .

let us further assume that each MAC and secret key are 64-bit long, and OK message, node

index and key index are 8-bit long. If l = 2, t = 5, v = w = 20 and n = 10, then LR = 592

bits, LK(t) = 1160 bits, LK(n) = 2320 bits, and LOK = 8 bits. Following equation (4.16), we

get

L′r ' 732 bits. (4.17)

www.manaraa.com

94

We set when not using Hill Climbing.

Let β = 10, p = 0.05 for SEF and p ' 0.275 for our scheme. From equations (4.12) to

(4.17), we derive that

e = 2112H, (4.18)

EOur ' 732(H + 36), (4.19)

ESEF = 306(H + 200), (4.20)

where EOur and ESEF denote the energy consumption in our scheme and SEF.

When compared with SEF, our scheme saves 1 − EOur
ESEF

' 50% of energy when H = 10,

and 40% when H = 20. As compared with the case of not using any filtering scheme, our

scheme consumes more energy, about EOur
Ee
− 1 ' 50% when H = 10. It starts to save energy

after 20 hops. However, 20 hops may seem to be too large for real sensor networks. To make

our filtering scheme more practical, we turn to Hill Climbing, which can save more energy by

dropping the false reports earlier.

When using Hill Climbing, the forwarding nodes have a higher detecting probability. For

example, the fist forwarding node of a cluster has a detecting probability of 0.775, which is much

larger than 0.275 when not using Hill Climbing. Assume the average detecting probability at

each hop is 0.5. Then, the energy consumption of our scheme becomes EOur ' 732(H + 20),

which means that our scheme starts to save energy after 10 hops and hence becomes more

practical. In addition, this comparison is based on a static network. When the network is

highly dynamic, our scheme can drop the false reports much earlier than other schemes do

(see our simulation results), which indicates that our scheme is more efficient and practical for

dynamic environments.

However, we also notice that this comparison is not quite fair for other schemes, because

our scheme involves extra overhead caused by control message K(n), which is 4 times longer

than an authenticated report and has to be disseminated at most hmax hops with q nodes

each hop. Although we try to reduce the frequency for disseminating K(n) and choose a small

value of hmax and q (see our simulation results), this overhead may be still high. In addition,

K(n) has more than 2000 bits and needs to be transmitted in multiple messages (the payload

www.manaraa.com

95

of each message in TinyOS is 29 bytes.), which increases the overhead of our scheme. We do

not measure the extra overhead caused by extra control messages, but we do agree that it is a

main drawback of our scheme.

4.5.3 Filtering DoS Attacks

Except for false reports injection attacks, adversaries may launching DoS attacks such as

report disruption attacks and selective forwarding attacks to prevent legitimate reports from

being delivered to the base station.

In report disruption attacks, compromised sensing nodes intentionally insert invalid MACs

into the reports to make them dropped by others. Most existing schemes are vulnerable to

these attacks. LEDS [66] mitigates the impact of these attacks by allowing a few invalid MACs

in the reports, but it does not solve the problem completely. On the contrary, our scheme can

easily combat these attacks. In our scheme, each sensing node discloses its auth-key following

the reports. Its neighbors can overhear the node’s reports and disclosed auth-key, and verify

the validity of its MACs. Since the node is monitored by its neighbors, it is deterred from

launching the attacks.

In selective forwarding attacks, compromised forwarding nodes selectively drop the legiti-

mate reports. These attacks are very hard to detect. In our scheme, each forwarding node

disseminates K(n) to q downstream neighbor nodes that are awarded the filtering capacity.

To deal with the attacks, we can require the forwarding node send the reports to all of these q

nodes. Unless all of them are compromised, the legitimate reports can always be delivered to

the base station. However, this solution incurs high communication overhead. An alternative

way is that in each round the forwarding node sends the reports to a randomly chosen node out

of those q ones. Given that only x nodes are compromised, the impact of selective forwarding

attacks will be mitigated into x
q .

www.manaraa.com

96

4.5.4 Filtering Other Attacks

Our scheme introduces new control messages and is a little bit complicated. It may suffer

some attacks that are specific for itself. Here, we discuss how to deal with these attacks.

Attack1: A cluster head is compromised. In our scheme, normal nodes take turns to act as

cluster head, so there is no difference between a cluster head and a norma node. It means that

a cluster head may be easily compromised or any compromised node can claim to be a cluster

head.

A compromised cluster head can disseminate a forged K(n) and then inject false reports

arbitrarily. Our scheme offers two countermeasures to prevent this attack. First, any node

including the compromised node is monitored by other nodes of the same cluster. When any

node overhears a forged K(n), it can easily detect it by checking its auth-key that is supposed

to be contained in the K(n). Thus, it knows that the cluster head is compromised and can

report to the base station to revoke that node. (Note: how to revoke a node is out of the

scope of our work.) Second, each K(n) must contain t distinct z-key. Since we assume that

each cluster has at most t− 1 compromised nodes, there must be at least one invalid z-key in

the forged K(n). The size of global z-key pool is w, thus, each forwarding node can filter the

forged K(n) with a probability p = 1
w , or equivalently, the forged K(n) can travel 1

p = w hops

following equation (4.11).

Similarly, when a compromised cluster head generates forged K(t) or false reports, these

two countermeasures are still useful. The forged message and reports are not only monitored

by other sensing nodes, but also filtered by forwarding nodes.

Attack2: Consecutive compromised nodes collaborate. If two or more consecutive nodes are

compromised and collaborate with each other, they can share the auth-keys they decrypt from

K(t) to generate false reports without being monitored.

Assume x consecutive nodes are compromised, where x ≤ (t − 1). They can decrypt xpt

auth-keys from a valid K(t), where p (as computed in equation (4.7)) is the probability that

one can decrypt an auth-key from K(n). So, they can generate a false report containing only

(t− xpt) forge MACs. Since p is also the probability that a forged MAC can be detected, the

www.manaraa.com

97

false report can be detected by an uncompromised node with the probability (1−xp)t
p and travel

p
(t−xpt) hops. Obviously, this analysis makes sense only when t − xpt > 0. Given x = (t − 1)

and t = 5, we have p < 1
t−1 = 0.25. It means when p < 0.25, t − 1 consecutive compromised

nodes cannot gain sufficient auth-keys to produce a false report without being filtered. We can

achieve this by adjusting the values of l, v and w. For example, when l = 2 and v = w = 20,

we can easily get p = 0.23 following equation (4.7).

Attack3: Compromised forwarding nodes abuses OK message. The OK message can be

abused in either negative or positive ways. First, a compromised forwarding node can always

or selectively send negative messages to make the reports dropped by its next-hop node. This

is actually a selectively forwarding attack caused by the abuse of OK message. It can be

addressed with the solutions we discussed above. Second, using OK message, a compromised

forwarding node can cheat its next-hop node to forward false reports one more hop. Given at

most t− 1 compromised nodes en-route, the worst case is that every two compromised nodes

are separated by a uncompromised one. Therefore, in the worst case, these t− 1 compromised

nodes can make false reports forwarded at most 2t− 2 hops.

Attack4: The compromised nodes use invalid node index. A false report containing unknown

node indexes can escape the detection from forwarding nodes, because they thought that they

do not have the corresponding auth-keys for those unknown nodes.

It is not possible to make the forwarding nodes be aware of the indexes of all nodes in

a cluster, because nodes are randomly deployed. Our solution is to re-assign each node a

continuous index from [1, n]. One way is to let nodes finish this job by themselves. In neighbor

discovery phase, each node can overhear the indexes of others within the same cluster. So, it

can sort these indexes in some order and re-assign itself a new index. Another way is to let each

forwarding node hash the nodes indexes into [1, n]. However, different indexes may be hashed

into the same value, which causes false positive errors. We can deploy more than n nodes

into each cluster and only allow one node to send reports when hash collision happens among

several nodes. The benefit is that we always have enough working nodes for each cluster, even

when some node dies.

www.manaraa.com

98

Attack5: In Hill Climbing, a large index y-key is compromised. In Hill Climbing, y-keys of

nodes are picked from hash chains. When a node having a large index y-key is compromised,

all y-keys of smaller indexes can be derived. In fact, the compromise of those y-keys of smaller

indexes is not an attack to our scheme. In Hill Climbing, y-keys are only used by forwarding

nodes to decrypt auth-keys from K(n). When an adversary compromises a large index y-key,

he could not get more auth-keys by deriving other y-keys of smaller indexes within the same

hash chain.

However, when a forwarding node containing a large index y-key is compromised, other

downstream nodes having y-keys of smaller indexes can no long decrypt the corresponding

auth-key, so they cannot detect a false report which happens to contain a forged MAC using

the corresponding auth-key. The filtering of this false report has to be delayed until it is

received by another forwarding node whose has a y-key of an even larger index. This is an

attack caused by compromising a large index y-key at early hop, which may allow a false report

to travel more hops. However, our simulation results show that Hill Climbing is much better

than other schemes even facing the impact of this attack.

4.6 Simulation Study

We study the performance of our scheme by simulation and also compare our scheme with

others such as SEF, IHA, and CCEF in terms of filtering capacity, fraction of false reports

filtered, and memory requirement in different environments.

4.6.1 Simulation Setup

• 103 nodes are randomly deployed to a 103 × 103 m2 square field with the base station

located at the center. The transmission range of each node is 50 m. These nodes are

divided into 100 clusters, where each cluster contains exactly n = 10 nodes.

• Each node picks l = 2 y-keys and one z-key, where the size of y-key pool and z-key pool

is v = w = 20.

www.manaraa.com

99

• The size of memory used by each node is denoted as mem, and measured by the number

of keys that each node stores. Typically, mem = 50. In our simulations, each cluster head

disseminates auth-keys to forwarding nodes. One node may need to store the auth-keys

from different clusters. When the memory is full, each node equally assigns its memory

to each cluster that it serves.

• Each node forwards K(n) to q = 2 selected downstream neighbor nodes, until K(n)

reaches the base station or has been forwarded hmax hops. Typically, hmax = 10.

• Each aggregated report contains t = 5 MACs, and there are at most t − 1 = 4 compro-

mised nodes in each cluster. The compromised nodes from the same cluster collaborate

with each other to share the compromised secret keys.

• To simulate the dynamic topology, we apply a simple ON/OFF operation model in which

each node switches its state between ON and OFF periodically. The duration of ON and

OFF states satisfies an exponential distribution. We define the percentage of OFF time

as network churn rate, which indicates the extend of topology changing.

• The routing protocol adopted in our simulations is GPSR. However, IHA and CCEF

are not suitable for GPSR, because they both require the existence of a fixed path

between each cluster head and the base station for transmitting control messages in both

directions. To make them work on top of GPSR, we revise them accordingly and define a

revised IHA and a revised CCEF. Moreover, in the revised CCEF, we let each forwarding

node always keep on forwarding the reports for which it has no witness key. This is

different from the original CCEF in which those reports are always discarded.

4.6.2 Simulation Results

Comparing our scheme with others by simulation, we obtain the following results:

1. Our scheme drops false reports earlier even with a lower memory requirement. In some

scenario, it drops the false reports within 6 hops with only 25 keys stored in each node,

but other scheme requires 12 hops even with 50 keys stored.

www.manaraa.com

100

2. Our scheme can better deal with the dynamic topology of sensor networks. It achieves a

higher filtering capacity and filters out more fraction of false reports than others do in a

dynamic network.

3. Hill Climbing increases the filtering capacity of our scheme greatly and balances the

memory requirement among sensor nodes.

4.6.2.1 Fraction of False Reports Filtered vs Number of Hops Traveled

We first consider the case that t − 1 compromised nodes are within the same cluster. We

assume a static environment in which all nodes are in ON state.

Figure 4.5 illustrates how the fraction of false reports that are filtered increases as the

number of hops that they travel grows. In our scheme, K(n) is disseminated at most hmax = 10

hops and each node stores at most mem = 50 keys. In SEF, each node picks k = 50 keys from

one of n = 10 partitions and each partition contains m = 100 keys. Hence, our scheme and

SEF are subject to the same memory constraint.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50
Average number of hops traveled by false reports

F
ra

ct
io

n
of

 fa
ls

e
re

po
rt

s
be

in
g

fi
lt

er
ed

Our (Hill Climbing, Analytical)

Our (Hill Climbing, hmax=10, mem=50)

Our (No Hill Climbing, Analytical)

Our (No Hill Climbing, hmax=10, mem=50)

SEF (k=50, m=100, n=10)

Figure 4.5 Fraction of false reports being filtered as a function of the num-
ber of hops that they traveled (In our scheme q = 2)

The simulation results in Figure 4.5 show that our scheme can drop 90% of false reports

within 5 hops (when using Hill Climbing) or 10 hops (without Hill Climbing), while SEF needs

www.manaraa.com

101

about 25 hops to achieve the same performance. The reason is that our scheme offers a higher

detecting probability than SEF does. For example, when not using Hill Climbing, our scheme

achieves p ' 0.275 that is much larger than p = 0.05 in SEF. If using Hill Climbing, the

detecting probability of the first forwarding node is up to p1 = 0.775, about 15 times larger

than that in SEF. This also proves that Hill Climbing can greatly improve the filtering capacity

of our scheme.

We also plot the analytical results of our scheme in Figure 4.5. We observe that the

simulation result is a little worse than the analytical one in the case of using Hill Climbing.

This is due to the limit of memory size (mem = 50) that we set in the simulation.

4.6.2.2 Filtering Capacity vs Memory Size

Figure 4.6 depicts how the filtering capacity varies with the different memory size, where

the filtering capacity is measured as the average number of hops that a false report can travel.

0

2

4

6

8

10

12

14

16

18

20

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Memory size (mem)

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

tr
av

el
ed

 b
y

fa
ls

e
re

po
rt

s

SEF (m=100, n=10)

Our (No Hill Climbing, hmax=5)

Our (No Hill Climbing, hmax=10)

Our (No Hill Climbing, hmax=20)

Our (Hill Climbing, hmax=5)

Our (Hill Climbing, hmax=10)

Our (Hill Climbing, hmax=20)

Figure 4.6 The average number of hops traveled by false reports as a func-
tion of the size of memory for each node. (In our scheme, we
set q = 2.)

The smaller the number of hops, the higher the filtering capacity. In SEF, when each node

picks all of 100 keys from a partition, a false report can still travel more than 8 hops. On the

www.manaraa.com

102

contrary, in our scheme a false report can travel no more than 6 hops even when each node

stores at most mem = 25 keys. So, our scheme outperforms SEF even with a much lower

memory requirement. Intuitively, a larger memory size can increase the filtering capacity.

However, we do not observe too much improvement in our scheme when mem > 25, which

implies that storing 25 keys in each node is sufficient for our scheme to filter most false reports.

4.6.2.3 Filtering Capacity vs Maximum Number of Hops for Key Dissem-

ination

Figure 4.7 shows the impact of hmax to the filter capacity of our scheme. Typically, dis-

seminating auth-keys farther gives more nodes the auth-keys and enables them to filter false

reports. On the contrary, the limited memory size forces each node discard more auth-keys for

each cluster in order to accommodate more clusters. Hence, it is not always helpful to increase

the value of hmax. Figure 4.7 indicates that the best value of hmax is between 5 to 10, because

90% of false reports have been dropped within 10 hops, as shown in Figure 4.5.

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Maximum number of hops for key dissemination (hmax)

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

tr
av

el
ed

 b
y

fa
ls

e
re

po
rt

s

Our (No Hill Climbing, mem=5)

Our (Hill Climbing, mem=5)

Our (No Hill Climbing, mem=15)

Our (No Hill Climbing, mem=25)

Our (Hill Climbing, mem=15)

Our (Hill Climbing, mem=25)

Figure 4.7 The average number of hops traveled by false reports as a
function of the maximum hops for key dissemination. (In our
scheme, we set q = 2.)

www.manaraa.com

103

4.6.2.4 Filtering Capacity in Dynamic Environments

Sensor nodes are prone to failures and may also turn off their radio and CPU to save energy,

which makes the topology of sensor networks highly dynamic. We simulate this by applying an

ON/OFF model and use network churn rate to measure the extend of the topology changing.

We still assume t− 1 compromised nodes are within the same cluster.

In Figure 4.8, we compare the filtering capacity of different schemes in dynamic environ-

ments of various network churn rate.

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Network churn rate

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

tr
av

el
ed

 b
y

fa
ls

e
re

po
rt

s

CCEF (Revised)
IHA (Original)
SEF (k=50, m=100, n=10)
IHA (Revised)
Our (No Hill Climbing, q=1)
Our (No Hill Climbing, q=2)
Our (Hill Climbing, q=1)
Our (Hill Climbing, q=2)
CCEF (Original)

Figure 4.8 The average number of hops traveled by false reports as a
function of the network churn rate. (In our scheme, we set
hmax = 10 and mem = 50.)

We distinguish the following two cases:

• The network churn rate is greater than 0.4 : In this case, the deployed network is severely

partitioned, and a lot of repots are dropped for path broken. Our experiments (not

plotted in Figure 4.8) show that around 10% of reports are dropped for path broken

when the network churn rate is 0.4, while more than 60% are dropped when the rate is

0.9. It implies that when the rate is bigger than 0.4, more and more false reports are

dropped due to network partition.

www.manaraa.com

104

• The network churn rate is smaller than 0.4 : In this case, partition is not a big problem,

and the filtering capacity is mainly determined by the detecting probability of nodes and

the length of paths from cluster heads to the base station. When the network churn rate

increases, the paths become longer and hence the false reports can travel more hops. We

focus on this case in the following discussion.

Figure 4.8 shows that our scheme has a higher filtering capacity than most of other schemes

have in dynamic environments. The only exception is the original CCEF, which seems to

outperform our scheme. However, it has a severe drawback, that is, a lot of legitimate reports

are dropped, because the forwarding nodes lack the corresponding witness keys in dynamic

environments. In addition, the original CCEF is not as good as our scheme in a static situation,

because it cannot filter the false reports en-route that are generated by compromised cluster

heads. Let us check it by simple calculations. When the network churn rate is zero, the average

length of a path is 27. Each cluster head has a probability t−1
n = 40% to be compromised, in

which case a false report can travel 27 hops. When the cluster head is not compromised, a false

report can go only one hop. Hence, the filtering capacity of CCEF is 27×40%+1×60% = 11.4

hops, which is consistent with our simulation results and much greater than that of our scheme.

In Figure 4.8, we observe that the curves of SEF and our scheme are relatively flat, which

means these two schemes are more independent of the topology changes than others. SEF

achieves this from the use of probabilistic key pre-distribution, however, it has to make a

tradeoff for a low filtering capacity. Our scheme achieves this by choosing q downstream

neighbor nodes for each forwarding node in key dissemination. We studied the impact of q

when choosing different values from 1 to 6. Intuitively, a larger value of q makes more nodes

receive the necessary key information for filtering false reports, and hence is more suitable for

dynamic networks. However, the limited size of memory forces the nodes to reduce the stored

auth-keys and lowers the filtering capacity. So, the value of q should be properly selected and

not be too large or small. Our experiments show that the curves for q = 2 to 6 are close

to each other, although q = 4 is slightly better than others. Considering the high overhead

incurred by choosing a large value of q, we decide to set q = 2 in our scheme. To make the

www.manaraa.com

105

figure clear, we only plot the curves for q = 1 and 2. For example, let us observe the curves of

our scheme with Hill Climbing. The average number of hops traveled by false reports is 3.4618

when q = 1 and 2.9469 when q = 2 in the case that the network churn rate is 0.1, and that

number is 11.3745 when q = 1 and 8.0412 when q = 2 in the case that the rate is 0.4. So,

choosing q = 2 can improve the filtering capacity by 1 − 2.9469
3.4618 ' 15% when the rate is 0.1,

and 1 − 8.0412
11.3745 ' 29% when the rate is 0.4. This means that our scheme is more adaptive to

dynamic environments when choosing q > 1 (e.g., q = 2), and it earns more benefit when the

topology is highly dynamic.

Figure 4.9 depicts the fraction of that false reports that reach the base station as a function

of the network churn rate. When the network churn rate is greater than 0.4, the fraction goes

down quickly because the network is severely partitioned. When the network churn rate is

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Network churn rate

F
ra

ct
io

n
of

 f
al

se
 r

ep
or

ts
 r

ea
ch

in
g

th
e

ba
se

 s
ta

ti
on

CCEF (Revised)

IHA (Original)

SEF (k=50, m=100, n=10)

IHA (Revised)

Our (No Hill Climbing)

Our (Hill Climbing)

CCEF (Original)

Figure 4.9 The fraction of the false reports that reach the base station as
a function of the network churn rate. (In our scheme, we set
hmax = 10, mem = 50 and q = 2.)

smaller than 0.4, the fraction is mainly determined by the detecting probability of nodes. The

simulation results in Figure 4.9 show that our scheme can drop more fractions of false reports

than others, except for the original CCEF (which drops even lots of legitimate report when

lacking a witness key.). As the network churn rate becomes larger (from 0 to 0.4): (1) The

www.manaraa.com

106

fractions of our scheme and IHA go up gradually, because more false reports are forwarded

by the nodes that have no corresponding auth-keys. (2) The fractions of SEF and the revised

CCEF decrease quickly, because the paths become longer, which makes the false reports subject

to the verification of more nodes and hence more likely to be filtered.

4.6.2.5 Filtering Capacity when Forwarding Nodes are Compromised

Besides sensing nodes, forwarding nodes may also be compromised. We assume that a

forwarding node does not directly collaborate with compromised sensing nodes by sharing

their keys. However, they may collaborate indirectly. That is, when a forwarding node is

compromised, it never filters out the false reports. Moreover, once it detects a forged MAC

within a false report, it may even replace the forged MAC by a correct MAC generated using its

own key. In these simulations, we assume there are exactly t− 1 compromised nodes including

one compromised cluster head. We further differentiate two scenarios: (1) The compromised

nodes are randomly distributed over the whole network. (2) They are located along the same

path from the compromised cluster head to the base station.

Table 4.1 shows the comparison of filtering capacity among various schemes in these two

scenarios. We set hmax = 10 and mem = 25 in our scheme, and do not test CCEF because it

cannot filter the false reports generated by the compromised cluster head.

Table 4.1 The average number of hops traveled by false reports.

Compromised nodes
in network along path

Our (Hill Climbing) 1.0294 1.6976
Our (No Hill Climbing) 1.3702 2.9176

SEF 3.2918 6.664
IHA (Revised) 2.5451 7.5769
IHA (Original) 9.1472 13.773

The results in Table 4.1 demonstrates that our scheme outperforms others and can drop

false reports earlier in both scenarios. The advantage of our scheme comes from two reasons:

(1) Our scheme offers a higher detecting probability to nodes. (2) Our scheme allows each

www.manaraa.com

107

node to monitor its downstream nodes, which prevents the compromised forwarding nodes

from replacing forged MACs.

4.7 Conclusion

In this work, we propose a dynamic en-route quarantine scheme for filtering false data

injection attacks in wireless sensor networks. In our scheme, each node uses its own auth-keys

to authenticate the reports, while a legitimate report should be endorsed by t nodes. The

auth-keys of each node form a hash chain, and are updated in each round. The cluster head

disseminates the first auth-keys of all nodes to forwarding nodes and then sends the reports

followed by disclosed auth-keys. The forwarding nodes verify the authenticity of the disclosed

keys by hashing the disseminated ones, and further check the integrity and validity of the

reports with the disclosed keys. Then, they inform the next-hop nodes to drop or keep on

forwarding the reports according to the verification results. This process is repeated at the

forwarding node at every hop.

Our scheme has several advantages: (1) Compared with others, our scheme can drop false

report much faster even with a smaller size of memory. (2) The nodes that are not compromised

would not be impersonated because of the distinct auth-keys that they own. So, if compromised

nodes could be detected, the infected clusters can be easily quarantined. (3) The Hill Climbing

key dissemination approach greatly improves the filtering capacity of our scheme and keeps

a balance of memory requirement among nodes. (4) Each node has multiple downstream

nodes that possess the necessary key information and are capable of filtering false reports.

This not only makes our scheme adaptive to highly dynamic networks, but also mitigates

the impact of attacks in which compromised nodes selectively drop legitimate reports. (5)

Each node monitors the broadcast of its downstream nodes or neighbors, which prevents the

compromised nodes from contaminating the legitimate reports intentionally or generating false

control messages.

However, our scheme achieves these advantages with some tradeoffs: (1) Compared with

SEF, our scheme is quite complicated. It introduces extra control messages such as K(n), K(t)

www.manaraa.com

108

and OK, which not only increases the complexity of operations, but also incurs extra overhead,

as we discussed in section 4.5.2. (2) Like any normal reports, the control messages can also

be abused, e.g., they also suffer forgery and DoS attacks. (Note: We have already discussed

how to prevent the abuse of control messages in section 4.5.4. For example, a forged K(n)

can be filtered within w hops.) (3) The introducing of extra control messages increases the

delay in delivering reports. (4) Our scheme requires sensor nodes to monitor their downstream

nodes or neighbors, which can be achieved by using only bidirectional links. So, sensor nodes

have to discard all directed links. (5) In our scheme, each node uses the same auth-key to

authenticate all of its reports of the same round. So, this auth-key can only be disclosed

after each forwarding node forwards all the reports to next hop, which poses a high memory

requirement to forwarding nodes due to the storing of all the reports of each round. (6) It

is hard to make our scheme cooperate with other energy saving protocols, because each node

has to be awake until it overhears the broadcast from its next-hop node. We leave this as our

future work.

www.manaraa.com

109

CHAPTER 5 ENHANCING INTEGRITY: Securing Network Coding

against Pollution Attacks

5.1 Introduction

Network coding is a new forwarding technique which receives various applications in tradi-

tional computer networks, wireless sensor networks [62] and peer-to-peer systems [29]. It was

first proposed by Ahlswede et al. [1] in order to maximize the throughput of multicast net-

works, in which a source intends to send its messages to multiple sinks simultaneously. Using

network coding, a node (including the source and forwarders) can encode its input messages

to generate an output one. This technique is different from the traditional approach which

requires duplicating every input message. In 2003, Li et al. [50] further proved that linear

network coding is sufficient to achieve the optimal throughput in multicast networks, which is

the minimum of all max-flows from the source to every sink.

However, network coding poses new challenges for security. For example, the applications

built on top of network coding are vulnerable to pollution attacks, in which the compromised

forwarders can intentionally pollute the transmitted messages or inject the forged messages

into networks. These attacks prevent the sinks from recovering the source messages correctly.

A more severe problem is pollution propagation That is, even a small number of polluted

messages can quickly propagate into the networks and infect a large proportion of nodes,

because each polluted message can be used by all downstream nodes. Therefore, the polluted

messages should be detected and filtered as early as possible.

Traditional signature approaches based on hash functions such as SHA or MD5 are not

suitable for network coding, because the encoding process carried out by each forwarder can

destroy the source’s signatures. Recently, several novel hashing or signature schemes have been

www.manaraa.com

110

proposed to address the pollution attacks against networks coding applications. Gkantsidis

and Rodriguez proposed a homomorphic hashing scheme [30] (called GR’s scheme) based

on Krohn’s work [47], and Charles, Jain and Lauter designed a new homomorphic signature

scheme [19] (called CJL’s scheme. However, GR’s scheme relies on extra secure channels to

transmit message hashes from the source to each node, while CJL’s scheme is built on top of

expensive Weil pairing operations [54, 56] over elliptic curves. Ho et al. [35] proposed to use

a simple polynomial hash function to detect polluted messages, and Jaggi et al. [39] discussed

the optimal rate that network codes can achieve under different threat models. Unfortunately,

Ho’s and Jaggi’s approaches can only detect or filter polluted messages at the sinks, rather

than at the forwarders.

In this work, we propose an efficient signature-based scheme against pollution attacks

on linear network coding systems. In our scheme, the source signs its messages using its

private key, while other nodes verify the received messages using the source’s public key. Our

scheme utilizes a novel homomorphic signature function, which allows forwarders to compose

the signatures for their output messages from those of input messages using the similar way

that the output messages are composed from the input messages. Since each node appends

the signatures to its output messages, its downstream nodes can verify the received messages

effectively and discard the polluted or forged ones. We prove that finding a hash-collision

message in our scheme is equivalent to solving a hard discrete logarithm problem. Experimental

results show that our scheme is ten times faster than some existing one. In addition, we present

an alternate lightweight scheme based on a much simpler linear signature function. This

alternate scheme further improves computation efficiency and is more suitable for resource-

constrained networks such as wireless sensor networks. However, it introduces a trade-off

between efficiency and security.

Our contribution is to propose an efficient signature-based scheme for addressing pollution

attacks. Our scheme allows the source to delegate its signing authority to the forwarders. That

is, the forwarders can generate the signatures for their output messages without contacting the

source, but they cannot create the valid signatures for polluted or forged messages. Our

www.manaraa.com

111

scheme does not need any extra secure channels, and can provide source authentication and

batch verification. Most importantly, it is much more efficient than existing ones.

The rest of this chapter is organized as follows: In section 5.2, we define system model,

threat model, and our goal. Then, we present our scheme in section 5.3 and provide security

analysis in section 5.4. We further introduce an alternate lightweight scheme in section 5.5 and

explain experimental results in section 5.6. In section 5.7, we present an example application

of our schemes in wireless sensor networks. Finally, we conclude in section 5.8.

5.2 Problem Statement

5.2.1 System Model

Network coding has been used in many networking systems such as wireless sensor networks

where some sensing nodes intend to send data to multiple sinks, or peer-to-peer file sharing

systems where multiple users want to download a file from a server.

In this work, we consider a general multicast network as shown in Figure 5.1. It consists of

a source s, multiple sinks t1, t2, · · · , tk and a number of forwarders. In this network, s wants to

send n source messages M1, · · · ,Mn to all the sinks, while the forwarders use linear network

coding to generate their output (or encoded) messages, which are typically denoted as E. (In

this work, we use the terms output message and encoded message interchangeably. They are

essentially the messages generated and transmitted by the forwarders.)

We follow the same settings adopted in [19] and [30]. That is, each message is divided into

m codewords each randomly picked from a finite field Zq, where prime q is a pre-determined

security parameter. So, each source message Mi for i = 1, · · · , n can be regarded as a row

vector such as

Mi = (mi,1,mi,2, · · · ,mi,m) , (5.1)

where mi,j ∈ Zq for j = 1, · · · ,m denote the codewords. Similarly, an encoded message E can

be represented as

E = (e1, e2, · · · , em) , (5.2)

www.manaraa.com

112

Mn

M1

2
E

Forwarders

Source Sinks

1

3

4 5

7

6
t1

tk

s

Figure 5.1 A general multicast network that adopts network coding. In this
network, a singe source s simultaneously transmits n messages
M1, · · · ,Mn to k sinks t1, · · · , tk through forwarders, which are
represented by nodes 1 to 7. The encoded messages are denoted
as E.

where ej ∈ Zq denote the codewords of E.

In linear network coding, each forwarder encodes its input messages into output message

E, which is a linear combination of input messages and can be eventually regarded as a linear

combination of source messages. Because of this, we can write E as

E = (α1 · · · αn)×

M1

...

Mn

 mod q

=
n∑
i=1

αiMi mod q

=

(
n∑
i=1

αimi,1, · · · ,
n∑
i=1

αimi,m

)
mod q , (5.3)

where (α1 · · · αn) is called encoding vector and used by the sinks to recover the source

messages.

Encoding vectors can be either randomly generated as described in [34] or pre-determined

based on the topology of networks. We assume that each message is appended with its encoding

vector in order to facilitate the decoding at the sinks. (This approach was described in [20].)

www.manaraa.com

113

Here, we augment each source message Mi and encoded message E respectively and obtain

M̃i = (mi,1,mi,2, · · · ,mi,m, 0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−i

)

= (m̃i,1, m̃i,2, · · · , m̃i,m, m̃i,m+1, · · · , m̃i,m+n) (5.4)

and

Ẽ = (e1, e2, · · · , em, α1, · · · , αn)

= (ẽ1, ẽ2, · · · , ẽm, ẽm+1, · · · , ẽm+n) . (5.5)

M̃i or Ẽ is called the augmented messages, which consists of the contents of original message

and corresponding encoding vector. It is easy to verify that Ẽ =
∑n

i=1 αiM̃i mod q, while

each codeword of Ẽ can be expressed as the same linear combination of the corresponding

codewords of augmented source messages. (Note: In the rest of the chapter, when we mention

a message (including the source message and encoded one), we always mean the augmented

version of the message.)

We further assume that the source (not only the forwarders) can also encode its messages,

i.e., the output messages from the source are also the encoded ones. This prevents the adver-

saries from recovering the source messages without collecting the sufficient number of encoded

messages.

5.2.2 Threat Model

We assume that the source is always secured, but the forwarders are not trustable. The

adversaries can fully control the compromised forwarders and launch the pollution attacks

from them. In such attacks, the adversaries may intentionally pollute the output messages

(augmented ones) of the compromised nodes, or directly inject the forged messages into the

networks through these nodes. Formally speaking, we identify message Ẽ as polluted or forged

if and only if it looses the consistency between the contents of original one and the appended

www.manaraa.com

114

encoding vector. In that case,

Ẽ 6= (ẽm+1 · · · ẽm+n)×

M̃1

...

M̃n

 , (5.6)

where (ẽm+1 · · · ẽm+n) is the encoding vector embedded into Ẽ. Suffering from such attacks,

the sinks may not be able to recover the source messages correctly.

More severely, the applications built on top of network coding may suffer pollution propaga-

tion, which means that a small number of polluted messages can easily infect a large proportion

of the networks. Once a forwarder received a polluted message, all its output messages become

polluted. When these polluted messages are further used by downstream nodes, more and

more messages are polluted. In this way, a small number of polluted messages can quickly

propagate into a large proportion of the networks.

5.2.3 Goal

In this work, we address the problem of securing network coding systems against the

pollution attacks. Our goal is to design an efficient scheme for filtering pollution attacks in

network coding systems, especially in those resource-constrained networks such as wireless

sensor networks that adopt network coding. The scheme should enable the forwarders to

detect and filter polluted messages as early as possible and must be highly efficient for the use

in resource-constrained networks in terms of computation. In addition, it does not require any

extra secure channels.

5.3 Our Scheme

5.3.1 The Framework of Hashing or Signature Schemes

Before introducing our scheme, we first propose a framework of the hashing or signature

schemes include our scheme and existing ones [19, 30] that address the pollution attacks for

linear network coding systems. In this framework, we roughly divide the schemes into three

phases:

www.manaraa.com

115

• Parameter setup phase: In this phase, the source chooses security parameters, calculates

its private and public keys, and determines the hash or signature function.

• Hash or signature calculation phase: In this phase, the source calculates the hashes or

signatures for its messages. These hashes or signatures may be securely transmitted to

forwarders and sinks, or directly attached to the messages.

• Message verification phase: In this phase, the forwarders and the sinks verify the received

messages. Verification is based on the encoding vectors embedded into the messages, the

hashes or signatures of the messages, and the source’s public keys. If verification suc-

ceeds, the received messages will be accepted and used for further encoding or decoding.

Otherwise, they are discarded.

The first phase can be done offline, but the other two must be executed online. So, the efficiency

of schemes is mainly determined by the computation overhead occurring in the second and third

phases.

Note: when a forwarder detected some polluted messages, it can either stop generating

its output messages, or only encode those unpolluted messages using new encoding vectors.

However, how to process after the pollution attacks are detected is out of the scope of our

work and will not be discussed here.

5.3.2 Overview and Detailed Procedures

In our scheme, the source generates the signature for each message using RSA private

key and appends the signature to the corresponding message. Other nodes (including both

forwarders and sinks) verify the received messages using the source’s public key. Our scheme

is based on a homomorphic signature function, which guarantees that any encoded message’s

signature can be composed from those of input messages (that are used to generate the encoded

message). Thus, a forwarder can generate the valid signatures for its output messages even

without knowing the source’s private key, as long as every node appends the signatures to its

output messages. The nice property of our scheme is that the forwarders have no ability to

create the valid signature for any polluted or forged message.

www.manaraa.com

116

The details of three phases of our scheme are as follows:

Parameter setup phase: In this phase, the source chooses the following security parameters

and keys.

• Two primes p and q satisfying q|(p − 1). Typically, q is 257-bit long and p is 1024-bit

long.

• (m+ n) different elements g1, · · · , gm+n. Each element is randomly picked from Zp and

has order q.

That is, for j = 1, · · · , (m + n), each gj has the form as s(p−1)/q mod p, where some

arbitrary s ∈ Zp and s 6= 1. Thus, we have

gtqj mod p = 1 for any integer t . (5.7)

• RSA public key (r, e) and private key d. We have r = uv, where u and v are two primes

that are only of the half length of r. Typically, r is 1024-bit long.

Let φ = (u− 1)(v − 1), then e and d are chosen such that gcd(e, φ) = 1 and ed ≡ 1 mod

φ. Thus, we have

ted ≡ t mod r for any integer t ∈ Zr . (5.8)

We assume all nodes know security parameters p, q and g1, · · · , gm+n as well as the source’s

public key (r, e).

Signature calculation phase: In this phase, the source calculates the signatures for its

messages M̃1, · · · , M̃n, where n is the total number of messages that the source can transmit

at the optimal rate in each unit of time.

Let h denote the signature function. For each message M̃i, the source calculates the signa-

ture

h(M̃i) =

m+n∏
j=1

g
m̃i,j
j mod p

d

mod r (5.9)

and append h(M̃i) to M̃i.

www.manaraa.com

117

Similarly, the signature of encoded message Ẽ can be calculated as

h(Ẽ) =

m+n∏
j=1

g
ẽj
j mod p

d

mod r . (5.10)

In our scheme, each forwarder is required to append h(Ẽ) to its output message Ẽ. But it

does not need to calculate h(Ẽ) as shown in equation (5.10), because the signature function is

homomorphic. That is, given an output message Ẽ =
∑n

i=1 αiM̃i mod q, its signature can be

calculated as

h(Ẽ) =
n∏
i=1

h(M̃i)αi mod r . (5.11)

This is because

h(Ẽ) = h

(
n∑
i=1

αiM̃i mod q

)

= h

((
n∑
i=1

αim̃i,1, · · · ,
n∑
i=1

αim̃i,m+n

)
mod q

)

=

m+n∏
j=1

g
∑n
i=1 αim̃i,j mod q

j mod p

d

mod r

=

m+n∏
j=1

g
∑n
i=1 αim̃i,j

j mod p

d

mod r (∵ (5.7))

=

m+n∏
j=1

n∏
i=1

g
αim̃i,j
j mod p

d

mod r

=
n∏
i=1

m+n∏

j=1

g
m̃i,j
j mod p

d

mod r

αi

mod r

=
n∏
i=1

h(M̃i)αi mod r . (5.12)

Equation (5.12) shows that the signature of an output message can be easily composed

by raising the signature of each input message to the power of corresponding coefficient. So,

each forwarder can generate the valid signatures for its output messages from the signatures

of input ones, without knowing the source’s private key. That why our scheme does not need

any extra secure channels to broadcast the source messages’ signatures into the whole network.

www.manaraa.com

118

Moreover, in our scheme, the forwarders have no ability to generate the valid signatures for

any polluted or forged messages (we will prove this later).

Message verification phase: In this phase, the forwarders or sinks verify the received mes-

sages based on the source’s public keys and the messages’ signatures. To verify message Ẽ, a

forwarder (or a sink) simply checks whether

h(Ẽ)e mod r =

m+n∏
j=1

g
ẽj
j mod p

 mod r , (5.13)

which can be derived from equations(5.8) and (5.10). If equation (5.13) is satisfied, the message

is accepted. Otherwise, it is assumed to be polluted.

5.3.3 Batch Verification

Our scheme supports batch verification [5], which can further reduce computation overhead

and speed up message verification. For instance, suppose a forwarder receives three messages

Ẽa, Ẽb and Ẽc. It can randomly select three coefficients βa, βb and βc and generate a new

message Ẽ = βaẼa+βbẼb+βcẼc. Benefiting from the homomorphic signature function, it can

obtain the signature of this new message as

h(Ẽ) = h(Ẽa)βa × h(Ẽb)βb × h(Ẽc)βc , (5.14)

and then verify Ẽ using h(Ẽ) as normal.

If the new message passes verification, all three input messages are accepted. Otherwise,

one or more messages must be polluted. In this case, further verification should be carried

out to find the malicious one(s). The node needs to re-check each input message individually

or use batch verification repeatedly on subsets of input messages. For example, we can use

binary-checking that is similar to binary-searching algorithm, to speed up re-checking. Binary-

checking rules out a half of input messages at each step. That is, we encode and check each

half of input messages separately. If pass, that half of messages will be accepted. Otherwise,

two sub-halves of the suspected half will be re-checked. This binary-checking process can be

iteratively carried out until all polluted messages are found.

www.manaraa.com

119

5.4 Security Analysis

We define a message as polluted using inequality (5.6), that is, the message’s contents are

inconsistent with the encoding vector transmitted along with the message. To prevent the

adversaries from polluting the encoding vector, we require that each signature be calculated

based on the augmented message that includes both the contents of original message and

the appended encoding vector. If signature calculation does not cover the encoding vector,

the adversaries can easily transmit a message (original one) along with a valid signature, but

append it with an incorrect encoding vector.

The purpose of an adversary is to generate a polluted message that can pass verification.

He has two choices. First, he may try to generate a valid signature for a polluted or forged

message. However, this requires he obtain the source’s private key. Second, he may try to

find a hash-collision message Ẽ′, which is different from a valid message Ẽ, but has the same

signature as that of Ẽ. That is, Ẽ′ 6= Ẽ, but h(Ẽ′) = h(Ẽ).

In our scheme, determining the source’s private key from its public key is equivalent to

solving an integer factorization problem, which is a well known hard problem and its hardness

is determined by the length of r, typically 1024 bits.

The adversary may brute force search for a hash-collision message. In our scheme, each

signature is a random element of finite field Zr, so the probability to find a hash-collision

message with brute force is as low as 1
r '

1
21024 . However, a smart adversary may try to find

a hash-collision message Ẽ′ by exploiting a valid message Ẽ and its signature h(Ẽ). We prove

that this is equivalent to solving a discrete logarithm problem.

Proposition: Given a valid message Ẽ along with its signature h(Ẽ), generating a hash-

collision message Ẽ′ from Ẽ, where Ẽ′ 6= Ẽ, is equivalent to solving a discrete logarithm

problem.

Proof: (Because of page limit, we only give the basic idea of proof here.)

First, we consider a special case when (m+ n) = 2. Thus, the signature of Ẽ is

h(Ẽ) = (gẽ11 × g
ẽ2
2 mod p)d mod r . (5.15)

www.manaraa.com

120

The purpose of the adversary is to generate a hash-collision message Ẽ′ = (ẽ′1, ẽ
′
2) such that

(gẽ
′
1

1 × g
ẽ′2
2 mod p) mod r = (gẽ11 × g

ẽ2
2 mod p) mod r , (5.16)

where ẽ′1 6= ẽ1 and ẽ′2 6= ẽ2. Let us fix ẽ′1 and define x = ẽ′2. The problem becomes to determine

x such that

g
ẽ′1
1 × gx2 = gẽ11 × g

ẽ2
2

=⇒ gx2 = g
ẽ1−ẽ′1
1 × gẽ22 . (5.17)

This is a discrete logarithm problem, that is, determining x given (g2, g
x
2) over some group Zp

(or Zr).

Similarly, this idea can be extended to the case when (m+n) > 2, which we do not discuss

in detail. In conclusion, we proved that finding a hash-collision message in our scheme is

equivalent to solving a hard discrete logarithm problem. �

We emphasize that a message whose contents are consistent with appended encoding vector

can always pass verification and will never be considered as polluted or forged, although the

message may not be as exactly as what we designed. For example, some forwarder is supposed

to transmit message Ẽ, but it actually outputs another message Ẽ′ = αẼ and appends a new

signature h(Ẽ)′ = h(Ẽ)α, where α is an arbitrary integer. In our scheme, although Ẽ′ is a

new message, it is still consistent and will be considered as a valid one, because in this new

message, the contents (i.e., codewords) of original message and coefficients of encoding vector

are both multiplied by α and it would not cause any problem for decoding at the sinks.

5.5 An Alternate Lightweight Scheme

5.5.1 Detailed Procedures

In some scenarios such as resource-constrained wireless sensor networks, computation ef-

ficiency is even more important than security. To be adaptive to these special scenarios, we

propose an alternate lightweight scheme based on a simpler linear signature function. Com-

pared with our homomorphic signature scheme, this alternate scheme improves signature cal-

culation efficiency up to a hundred times. However, it has to sacrifice desired security level to

www.manaraa.com

121

such a extent that, adversaries may be able to derive the source’s private keys or find some

hash-collision message if they cab capture sufficient number (i.e., (m+n) or logq) of linearly

independent messages.

The details of this alternate scheme are as follows:

Parameter setup phase: In this phase, the source chooses

• two primes p and q such that (q|p− 1). Typically, q is 257-bit long and p 1024-bit.

• an order-q element g randomly picked from Zp, where gtq mod p ≡ 1 for any integer t.

• (m+ n) distinct private keys x1, x2 · · · , xm+n, where xj ∈ Zq for j = 1, · · · , (m+ n).

• and corresponding public keys y1, y2 · · · , ym+n, where yj = gxj mod p for j = 1, · · · , (m+

n).

We assume all nodes know the security parameters p, q and g as well as the source’s public

keys.

Signature calculation phase: In this phase, the source calculates the signatures for its

messages M̃1, · · · , M̃n, and appends the signatures to corresponding messages.

Let h denote the signature function. For each message M̃i where i = 1, · · · , n, the source

calculates its signature

h(M̃i) =
m+n∑
j=1

xjm̃i,j mod q . (5.18)

Similarly, the signature of encoded message Ẽ is

h(Ẽ) =
m+n∑
j=1

xj ẽj mod q . (5.19)

However, a forwarder does not need to calculate the signature for its output message Ẽ this

way. Since the signature function is linear, an encoded message’s signature can be composed

from those of input messages with the same linear relationship that the encoded message itself

is composed from those input ones. That is, given Ẽ =
∑n

i=1 αiM̃i mod q, we have

h(Ẽ) =
n∑
i=1

αih(M̃i) mod q . (5.20)

www.manaraa.com

122

Thus, a forwarder can generate valid signatures for its output messages by simply encoding

those of its input ones. So, this scheme does not require any extra secure channel.

Message verification phase: In this phase, the forwarders or sinks verify received messages

based on the source’s public keys and the messages’ signatures. Assume a forwarder receives

message Ẽ along with its signature h(Ẽ). It simply checks whether

gh(Ẽ)mod p =
m+n∏
j=1

y
ẽj
j mod p . (5.21)

This verification should work, because for a valid message Ẽ,

gh(Ẽ)mod p = g
∑m+n
j=1 xj ẽj mod q mod p

=
m+n∏
j=1

y
ẽj
j mod p . (5.22)

If equation (5.21) is satisfied, the message will be accepted. Otherwise, it is discarded.

5.5.2 Security Analysis

In this scheme, calculating the source’s private key xj from corresponding public key gxj

is equivalent to solving a discrete logarithm problem [70]. However, an adversary may try to

learn the private keys from transmitted messages, because each message Ẽ represents a linear

equation with (m+ n) unknown private keys x1, x2, · · · , xm+n. That is,

h(Ẽ) = (x1ẽ1 + x2ẽ2 + · · ·+ xm+nẽm+n) mod q . (5.23)

If the adversary has collected (m+ n) linearly independent messages, it can derive the private

keys by solving the corresponding linear equations. Thus, this scheme poses a upper bound of

the number of messages that the source can transmit.

The probability that the adversary brute force a hash-collision message is 1
q '

1
2256 , since

each signature is a random element picked from finite field Zq. However, a smart adversary

may exploit the linear property of our signature function to find a hash-collision message. In

this scheme, each message can be regarded as a vector of length (m + n) and each signature

can be represented by a vector of log q bits, where typically log q = 256. Hence, the linear

www.manaraa.com

123

signature function establishes a map from (m+n)-dimension message space to log q-dimension

signature spaces. Ideally, log q linearly independent messages will be mapped to the same

number linearly independent signatures without collision. However, if the adversary picks one

more message which is linearly independent of all previous ones, this new message will be

mapped to a signature which is linearly dependent on previous signatures, since we already

have log q linearly independent signatures and any new signature must be linearly dependent

on these log q ones. Thus, the adversary successfully finds out two messages mapped to the

same signature. To prevent this attack, the source should generate no more than log q = 256

linearly independent messages. If the source wants to send more messages, it has to either

choose a larger q or update its private keys after producing log q − 1 linearly independent

messages. Certainly, the second method will increase communication overhead.

5.6 Experimental Results

5.6.1 Experiment Setup

We compare CJL’s scheme [19], GR’s scheme [30] and our schemes in experiments. (We

do not study Ho’s scheme [35], since it can only detect polluted messages at sinks, instead of

filtering them at forwarders.) The implementation of these schemes is built on top of software

package MIRACL [57] and tested on a Pentium-4 3.00 GHz Linux machine.

For CJL’s scheme, we choose a supersingular elliptic curve

E(Fp) : y2 = x3 + 1 (5.24)

with p ≡ 2 mod 3 and p ≡ 3 mod 4, where p is a 1024-bit prime. We test this scheme based

on the Tate pairing with q-torsion points, where q is a 160-bit prime. (We select Tate pairing

instead of Weil pairing [41], because it is more computationally efficient for cryptographic

operations, as shown in [28].) For GR’s scheme and our schemes, we set p a 1024-bit long

prime and q a 256-bit long prime. Typically, we choose the total number of messages n = 128

and each message containing m = 256 codewords. In our experiments, we always let n = m/2.

www.manaraa.com

124

5.6.2 Computation Overhead

We study computation overhead of these schemes in term of running time of each phase

with m = 256 and n = 128. Table 5.1 shows that, CJL’s scheme is the slowest and the

alternate scheme is the fastest, especially in terms of signature calculation. Our scheme has

similar performance in computation efficiency to GR’s scheme.

Table 5.1 Computation overhead of different schemes on Pentium-4 com-
puter (m: 256-bit and n: 128-bit)

CJL’s GR’s Our Alternate
Scheme Scheme Scheme Scheme

Parameter Setup 10.65 s 2.85 s 2.87 s 1.55 s
(n messages)

Sig/Hash Calculation 5.37 s 0.96 s 1.42 s 0.01 s
(per message)

Message Verification 16.54 s 1.43 s 1.44 s 1.43 s
(per message)

In parameter setup phase, CJL’s scheme must generate (m+n+ 1) q-torsion points. GR’s

scheme should choose m order-q elements. Our scheme has to select m + n order-q elements

and a RSA private key, while the alternate scheme needs to generate (m+ n) pairs of private

key and corresponding public key. Table 5.1 shows that choosing q-torsion is the most time-

consuming, which takes 4× the time for choosing (m+n) order-q elements for our scheme and

7× the time for choosing (m+ n) private and public keys for the alternate scheme.

To calculate the signature for a message, our scheme (or GR’s scheme) spends 1.42s (or

0.96s) on (m + n) (or m) modular exponentiations, while the alternate scheme spends only

0.01s on (m+n) linear operations. Signature calculation of CJL’s scheme is based on (m+n)

q-torsion points and extremely time-consuming, which takes 5.37s. (Note: Time values of

signature or hash calculations shown in the table are based only on one message. To send n

messages, the source should spend much more time to calculate signatures or hashes, which

may cause a large transmission delay at the source.)

The main task of forwarders is to verify messages. Verification should be done as fast as

possible. Otherwise, it becomes the bottleneck of whole network and prevents the source from

www.manaraa.com

125

sending messages at the optimal rate. Hence, verification speed is the most important metric

for evaluating performance of schemes. Table 5.1 shows that our scheme and the alternate one

have similar verification efficiency to GR’s scheme and are much faster than CJL’s scheme. In

addition, Figure 5.2 depicts how verification overhead of different schemes increases linearly as

m grows from 16 to 1024. Clearly, our scheme, the alternate one and GR’s scheme are much

faster than CJL’s scheme in message verification.

0

10

20

30

40

50

60

70

0 128 256 384 512 640 768 896 1024
Number of codewords per message

V
er

if
ic

at
io

n
ti

m
e

pe
r

m
es

sa
ge

 (s
) CJL's Scheme

GR's Scheme

Our Scheme

Alternate Scheme

Figure 5.2 Comparison of computation efficiency among different schemes
in terms of verification time (per message). It shows that GR’s
scheme, our scheme and alternate scheme preform similarly in
message verification.

From equations (5.13) and (5.21), we can see that our scheme and the alternate one require

(1 +m+ n) modular exponentiations on the signature of received message, m codewords and

n encoding vector elements. GR’s scheme needs (m + n) ones, where m operations are used

for calculating the hash of received message and n ones for the hashes of source messages.

Compared to other operations such as modular additions and modular reductions, modular

exponentiations dominant the message verification phase. So, the ratio of verification overhead

of our scheme (or the alternate one) over that of GR’s scheme is 1+m+n
m+n ' 1. That is why

Figure 5.2 shows these schemes have almost the same performance on verification efficiency.

Although GR’s scheme has comparable efficiency to our scheme in terms of verification, it

www.manaraa.com

126

requires an extra secure channel. In addition, our scheme can provide source authentication,

since it is based on a signature function, instead of a hash function as in GR’s scheme.

The verification process of CJL’s scheme is similar to that of our scheme and the alter-

nate one. The only difference is that CJL’s scheme is based on pairing operations, while our

scheme and the alternate one are based on modular exponentiations. Hence, the difference of

verification efficiency between our scheme (or the alternate one) and CJL’s scheme is mainly

determined by efficiency of pairing operations and modular exponentiations. Figure 5.2 shows

that CJL’s scheme is ten times slower in message verification than our scheme (or the alter-

nate one), because the pairing computation is extremely time-consuming. So, our scheme is

much more efficient than CJL’s scheme, although they both base their security on the discrete

logarithm problem.

5.7 Application to Wireless Sensor Networks

Wireless sensor networks consist of a number of resource-constrained nodes with limited

power resource, memory space, computation and communication capacity. Maximizing net-

work throughput with network coding is very important for wireless sensor networks, because

it can reduce communication overhead and hence save energy for sensor node. Moreover, since

sensor nodes are prone to failure, applying network coding technique in wireless sensor net-

works can make wireless communications between sensor nodes more robust by reducing the

need of frequent retransmission (as long as sinks can receive sufficient number of messages for

decoding).

Let us consider an example data-centric storage application [65] for wireless sensor networks.

In this application, sensing data are organized by keys, and each sensing node wants to store

their data into multiple storage nodes responsible for some particular key. In this scenario,

network coding technique can be used for maximizing data rate of sensing nodes and providing

robust communications. However, sensor nodes can be easily compromised and adversaries

could launch pollution attacks from these compromised nodes. Hence, we need an efficient

and effective scheme for addressing such pollution attacks. In wireless sensor networks, there

www.manaraa.com

127

is no secure channel between an arbitrary sensing node and storage nodes. (Someone may

claim to use a trusted based station to forward secure information between the sensing node

and storage nodes. However, it incurs high communication overhead and in some cases the

trusted base station may even not exist when needed.) Thus, GR’s scheme is not applicable in

this scenario. Since wireless sensor nodes are extremely constrained in terms of computation

capacity and power resource, computation efficiency is the main consideration for choosing a

proper scheme to address pollution attacks. Compared with CJL’s scheme, our scheme and

the alternate one take much less time in signature calculation and message verification, so

they significantly reduces energy consumption in computation and hence is more suitable for

wireless sensor networks.

We have implemented GR’s scheme, our scheme and the alternate one on MicaZ mote.

(The implementation of CJL’s scheme on MicaZ mote is still in progress.) MicaZ mote is only

equipped with an 8-bit microprocessor ATmega128, 4K bytes memory (RAM) and 128K bytes

program flash memory (ROM). Since it is extremely resource-constrained, we have to relax our

security requirement by choosing some smaller security parameters. In our implementation,

we set p as 256-bit prime, q as 128-bit prime, the number of codewords m=16 and the number

of source messages n=8. Our implementation is based on the software package provided by

Wang and Li [76] and experimental results are shown in Table 5.2. From the table, we can see

that all schemes have to spend around 150s to verify one message, which implies that modular

exponentiation is still time-consuming for wireless sensor nodes. Table 5.2 also shows that the

alternate scheme is much more efficient in signature calculation than other two, where it takes

only 0.12s to generate a signature, compared to almost 100s for GR’s scheme and around 147s

for our scheme. If we emphasize verification speed, we should choose the alternate scheme. If

we value high security as well as efficiency, our scheme is the best, instead of GR’s scheme.

(Note: Although our scheme and the alternate one still need long time for message veri-

fication, we hope technical advance in electronics and better software implementation would

make them more practical for resource-constraint networks. We are glad to see that more

and more researches [32, 72, 76] are being conducted on efficient implementation of public key

www.manaraa.com

128

Table 5.2 Computation overhead of different schemes on wireless sensor
nodes (p: 512-bit, q: 128-bit, m=16 and n=8)

GR’s Our Alternate
Scheme Scheme Scheme

Parameter Setup 1.56 s 1.61 s 1.39 s
(n messages)

Sig/Hash Calculation 99.79 s 147.36 s 0.12 s
(per message)

Message Verification 149.70 s 155.14 s 151.28 s
(per message)

crypto-systems on sensor nodes.)

5.8 Conclusion

In this work, we proposed an efficient signature-based scheme against pollution attacks

for securing linear network coding. Our scheme utilizes a novel homomorphic signature func-

tion and allows a source to delegate its signing authority to forwarders, which means that

the forwarders can generate the signatures for their output messages without contacting the

source. This property allows the forwarders to verify received messages, but prevent them

from creating the valid signatures for polluted or forged ones. Thus, the pollution attacks

can be efficiently and effectively filtered out at the forwarders. Our scheme does not need

any extra secure channels, and can support source authentication and batch verification. Ex-

perimental results show that our scheme can improve verification efficiency up to 10 times

compared to some existing one. In addition, we presented an alternate lightweight scheme

which utilizes a simpler signature function. This scheme is much faster and more suitable

for resource-constrained networks such as wireless sensor networks. However, it introduces a

trade-off between computation efficiency and security.

In this work, we assume that the source is always benign, but only the forwarders can be

compromised. In future, we will study how to detect and filter forged messages injected by

adversaries via the compromised sources. In addition, we will implement CJL’s pairing-based

signature scheme on sensor nodes and conduct experimental evaluation.

www.manaraa.com

129

CHAPTER 6 ENHANCING INTEGRITY: Securing XOR Network

Coding against Pollution Attacks

6.1 Introduction

Unlike the traditional message forwarding approaches that always duplicate the forwarding

messages, network coding [1, 50] allows forwarders to combine multiple input messages into

one or more output (or encoded) ones. This technique is promising to maximize network

throughput and to reduce the number of retransmissions in both wired networks [20, 29] and

wireless ones [44, 62]. In these applications, network coding is normally operated over large

finite fields, so we term it normal network coding. Recently, a special network coding based only

on XOR operations (i.e., over a field of size 2), has gained an increasing number of applications

[45, 81, 92], especially in wireless networks, due to its simplicity. We call this special network

coding XOR network coding, which is the focus of our research.

Both normal and XOR network coding systems are vulnerable to pollution attacks. In such

attacks, adversaries inject polluted messages into the systems via the compromised forwarders.

These attacks not only prevent the sinks from recovering the source messages, but also drain

out the energy of the forwarders. Clearly, they are a big threat to resource-constrained wireless

networks such as wireless sensor networks. Therefore, it is crucial to filter the polluted messages

in network coding systems as early as possible.

So far, a number of schemes [19, 30, 35, 39, 47, 91, 93] have been proposed for addressing

pollution attacks against network coding systems. These schemes can be categorized into two

classes: (1) filtering the polluted messages only at the sinks, such as [35, 39]; and (2) filtering

the polluted messages at the forwarders (including the sinks), such as[19, 30, 47, 91]. However,

these schemes all base their security on the size of underlying fields, so none of them could be

www.manaraa.com

130

used to secure XOR network coding systems.

In this work, we propose the first scheme (to the best of our knowledge) for securing XOR

network coding systems against pollution attacks. Our scheme allows the polluted messages

to be filtered at the forwarders, and it works not only for XOR network coding, but also for

for normal network coding.

Our scheme exploits probabilistic key pre-distribution and message authentication codes

(MACs). In our scheme, the source generates multiple MACs for each message using its secret

keys, where each MAC can authenticate only a part of the message and the parts authenticated

by different MACs are overlapped. Every encoded message is attached with the MACs of the

source messages from which it is constructed. Therefore, multiple downstream forwarders

can collaboratively verify different parts of the encoded message using the MACs and their

own shared keys. By carefully controlling the overlapping between the parts authenticate by

different MACs, our scheme can filter polluted messages in a few hops with a high probability.

Experimental results show that it is 200 to 1000 times faster than existing ones, hence, it is

particularly suitable for resource-constrained wireless networks.

The rest of chapter is organized as follows: In section 6.2, we discuss system model and

threat model, and define the problem. Then, we explain in section 6.3 the symbols we use in

the work. We propose our scheme in section 6.4 and analyze its performance in section 6.5.

We further explain experimental results in section 6.6. Finally, we conclude in section 6.7.

6.2 Problem Statement

6.2.1 System Model

In this work, we consider a general multicast network in which there are one source, multiple

sinks and a number of forwarders. The source sends its messages to all of the sinks at the

optimal rate that the network can support, while the forwarders use XOR network coding

technique to generate and forward the output (or encoded) messages. (Note: we use terms

output message and encoded message interchangeably in this work.)

Let s denote the source, and M1, · · · ,Mn denote the source messages, where n is the

www.manaraa.com

131

number of messages that s can transmit per unit of time in its optimal rate. Here, we assume

that the source can generate messages continuously. That is, in every unit of time, s generates

n messages and the forwarders transmit them using the same network code. We claim that

our model is more generalized compared with some commonly used file-distribution models,

which consider distributing a single file mainly. In those models, the security parameters are

calculated from the content of the distributed file. So, once a new file is to be downloaded, the

source has to re-broadcast the security parameters. We believe this design is very cumbersome

so we consider a more generalized model.

We denote the encoded messages as E. In XOR coding, an encoded message can be

represented as

E = α1M1 ⊕ α2M2 ⊕ · · · ⊕ αnMn , (6.1)

where αi ∈ {0, 1} for i = 1, · · · , n. The bit string (α1 · · · αn) is called the encoding vector

of E. For example, if α1 = α2 = 1 and other coefficients are 0, we have E = M1 ⊕M2. We

assume a randomized network code, which generates encoding vectors randomly and transmits

them along with the corresponding encoded messages. So, the forwarders (and the sinks) can

use the encoding vectors to verify the received messages.

We adopt the model used in [30] and divide each message into m codewords of the same

length. Typically, each codeword is 256-bit long. Most of existing schemes regard each code-

word as a random element over a finite field of size q and encode the messages over the same

field, so in those scheme q is a 256-bit prime. However, our scheme partitions codewords only

for constructing message authentication codes (MACs), so the field used for partitioning the

codewords is different from that over which the codewords are operated. For XOR coding, our

scheme encodes the codewords over a field of size 2, although it still divides the codewords into

256-bit long.

From the perspective of codewords, each source message Mi for i = 1, · · · , n can be ex-

pressed as a row vector

Mi = (mi,1,mi,2, · · · ,mi,m) , (6.2)

www.manaraa.com

132

where mi,j for j = 1, · · · ,m denote codewords. Similarly, an encoded message E can also be

regarded as

E = (e1, e2, · · · , em) , (6.3)

where ej are the codewords for j = 1, · · · ,m.

We further assume that all of the nodes have been assigned some random secret keys using

the probabilistic key pre-distribution schemes such as [25, 90]. In particular, we assume that

each node picks a fixed number of keys randomly from a large global key pool. By carefully

controlling the key pool size and the number of keys that each node picks, we assure that

any two nodes have certain probability to find some shared keys. The source uses its keys to

generate message authentication codes (MACs) for its messages, while the forwarders verify

the MACs of received messages using their shared keys with the source.

6.2.2 Threat Model and Goal

We assume that the source is always trusted, but the forwarders can be compromised. The

adversaries can fully control the compromised forwarders and launch pollution attacks. In such

attacks, they may either pollute the output messages of the compromised nodes, or inject the

forged messages into systems. Formally speaking, we identify that an encoded message E has

been polluted or forged, if and only if its content is not consistent with its encoding vector,

that is,

E 6= α1M1 ⊕ α2M2 ⊕ · · · ⊕ αnMn . (6.4)

The pollution attacks not only prevent the sinks from recovering the source messages, but

also drain out the limited energy of the forwarders, especially in resource-constrained wireless

networks.

More severely, network coding systems (including XOR and normal coding) suffer from

pollution propagation, i.e., a small number of polluted messages can quickly propagate in the

systems and infect a large proportion of nodes and their messages. When a forwarder receives

a polluted message, all of its output messages will be polluted. Then, these polluted messages

www.manaraa.com

133

are further used by downstream forwarders for encoding, thus, more and more messages will

be polluted. So, it is necessary to filter the polluted messages as early as possible.

Our goal is to design an efficient scheme that can filter pollution attacks for the systems

adopting XOR network coding. We are particularly interested in the resource-constrained

wireless networks such as wireless sensor networks, which can be greatly benefited from the

use of XOR network coding. We expect that our scheme can make the forwarders to detect

and filter the polluted messages as early as possible, while it is still highly efficient in terms of

computation overhead. In addition, the scheme should not rely on any extra secure channels.

6.3 Notation

In Table 6.1, we explains the symbols used in the paper.

6.4 Our Scheme

6.4.1 The Framework for Securing Network Coding against Pollution Attacks

Before introducing our scheme, we first propose a framework that generalizes all of the

schemes for securing network coding systems against pollution attacks. Within this framework,

we roughly divide these schemes into three phases:

• Parameter setup phase: The source determines security parameters, chooses its keys

including secret keys or public and private keys, and selects its hash or signature function.

• MAC (hash or signature) calculation phase: The source calculates the authentication

information such as the hashes, MACs or signatures of its messages. This information

is either securely transmitted to the forwarders and sinks, or directly attached to the

original messages.

• Message verification phase: The forwarders and sinks verify received messages. Verifica-

tion is based on encoding vectors, authentication information, shared secret keys or the

source’s public keys. If verification succeeds, the received messages are accepted and will

be used for further encoding or decoding. Otherwise, they are discarded.

www.manaraa.com

134

Table 6.1 Notation

Symbol Explanation
Mi,mi,j i-th source message and its j-th codeword
E, ej encoded message and its j-th codeword
n the number of source messages transmitted
m the number of codewords of each message
t the number of random keys each node has
u the number of codewords hashed in each MAC
wi,j message Mi’s hash embedded in its j-th MAC
K, |K| global key pool and its size
ks,i i-th key of the source

id(ks,i) ks,i’s index in key pool
{x}ks,i encrypting x with random key ks,i
ri random seed used to generate hash chain for i-th MAC
ri,j j-th element of hash chain computed from ri

The first phase can be done offline, but the other two must be executed online. Hence, the

second and third phases mainly determine the efficiency of schemes.

Note: Once a forwarder detects a polluted message, it may either encode other unpolluted

messages by selecting a new encoding vector, or ask its upstream node to send the message

again, because the pollution may be due to transmission error. Of course, the number of

retransmissions should be pre-defined. We do not discuss this issue here, because it is out of

the scope of our work.

6.4.2 The Detailed Procedure of Our Scheme

We assume that each node can randomly pick up a number of secret keys from a global

key pool, utilizing some probabilistic key pre-distribution approaches such as [25, 90]. Thus,

any two nodes have certain probability to share a common secret key. The source generates

the same number of MACs for each message using its random keys. Each MAC is calculated

based on some codewords randomly selected from the message, hence, it can authenticate those

codewords of the message. In this way, each forwarder sharing some secret key(s) with the

source can verify the corresponding codewords of an input message by checking the MACs

using the shared key(s).

www.manaraa.com

135

However, this shared-key based verification has a vulnerability. That is, a compromised

forwarder who has a shared key is aware that which codewords have been used to generate an

MAC. Then, it can pollute the corresponding codewords of messages without being detected,

although it is unable to pollute the codewords authenticated by other MACs for which it has no

shared keys. To address this vulnerability, we choose to overlap the codewords authenticated

by any two MACs for the same message. By carefully controlling the overlapping ratio, we

assure that a polluted message can be detected within certain hops with a high probability.

We describe the detailed procedure of each phase of our scheme in the rest of this section.

Parameter setup phase: In this phase, the source first chooses the following security

parameters, functions and secret keys:

• Two parameters t and u, where t is the number of MACs attached to each source message,

and u is the number of codewords used to generate a MAC. These two parameters are

public.

• t random integers r1, · · · , rt, where each rj ∈ [1,m] for j = 1, · · · , t. Each integer will

be embedded into an MAC for identifying the indexes of codewords based on which the

MAC is generated.

• A pseudo-random permutation function f : [1,m] → [1,m], where f is public and any

node can compute a hash chain from a given seed rj using this function.

• A hash function h : Zuq → Zq, where Zq constrains the range of codewords and h is

public. Using h any node can generate a hash from u codewords, where the length of the

hash is the same as that of codewords.

• t random keys ks,1, · · · , ks,t from a global key pool K, where s is the index of the source.

The index of each key ks,i in the key pool for i = 1, · · · , t is denoted as id(ks,i).

Note: We suppose that each node picks t random keys from K. The keys of node j are denoted

as kj,1, · · · , kj,t.

MAC calculation phase: In this phase, the source attaches t MACs to each message Mi

for i = 1, · · · , n, where n is the total number of source messages. Each MAC is calculated by

www.manaraa.com

136

encrypting the hash of u randomly selected codewords using a random key. For XOR network

coding, a hash is simply an XOR of the selected codewords, whereas for normal network coding,

the hash is a random linear combination of the selected codewords.

More precisely, message Mi is attached with t MACs MACi,1, · · · ,MACi,t as well as the

corresponding indexes of the random keys that are used to generate MACs. Thus, in our

scheme, the source actually generates and transmits

Mi, id(ks,1), MACi,1, · · · , id(ks,t), MACi,t . (6.5)

For j = 1, · · · , t, we define

MACi,j = {id(ks,j), rj , hi,j}ks,j , (6.6)

where {·}ks,j denotes encryption using key ks,j , and hi,j is the hash of u randomly selected

codewords of message Mi. The indexes of these codewords are determined by a hash chain that

is computed from a seed rj using function f . For v = 1, · · · , u, let rj,v denote each element of

the hash chain. Then, we have

rj,v = f(rj,v−1) , (6.7)

where rj,0 = rj . Here, rj,1, · · · , rj,u are the indexes of selected codewords.

Once u codewords are selected, the source can generate the hash from these codewords

using function h. For XOR network coding, the hash is

hi,j = mi,rj,1 ⊕ · · · ⊕mi,rj,u . (6.8)

Note: we also take the consideration of normal network coding. In this case, the hash

becomes

hi,j = β1mi,rj,1 + · · ·+ βumi,rj,u mod q

=
u∑
v=1

βvmi,rj,v mod q , (6.9)

where the coefficients βv ∈ Zq for v = 1, · · · , u are randomly generated to combine these

codewords. A simple way to generate these coefficients is to let them form a hash chain, which

is generated from the seed rj using another pseudo-random permutation function f ′. (We do

not discuss f ′ here.)

www.manaraa.com

137

Finally, each source message is attached with t MACs, and each MAC is computed from u

codewords. Or equivalently, each MAC authenticates u codewords of a message. We emphasize

that the codewords authenticated by different MACs may overlap, that is, the same codeword

may be used to generate different MACs. Averagely, each codeword is authenticated by t×u
m

MACs.

In our scheme, when each forwarder generates its output message, it always attaches the

MACs of all source messages from which this output message is produced. For example, when a

forwarder generates E = Mi⊕Mj , it will attach MACi,1, · · · ,MACi,t and MACj,1, · · · ,MACj,t

to its output message E. We observe that the source generates the MACs for different messages

using the same set of random keys, so the indexes of keys such as id(ks,j) in equation (6.6) do

not need to be transmitted multiple times.

Message verification phase: In this phase, each forwarder or sink verifies its input

messages based on the MACs for which it has the shared key(s) with the source. When

receiving a message along with the MACs of all source messages from which this message is

encoded, the node processes as follows:

1. It first checks the indexes prefixed to each MAC to see if it has any shared key with the

source.

2. Once finding a shared key, it decrypts the corresponding MACs of source messages and

generates the indexes of u codewords from the seed embedded into the MACs.

3. For normal network coding, it also needs to generate the coefficients used to combine the

codewords.

4. After identifying the indexes of codewords, it takes the corresponding codewords out of

the received message and calculates the hash of these codewords following equation (6.8)

for XOR coding (or equation (6.9) for normal linear coding).

5. It further takes out the hashes embedded into the decrypted MACs of source messages

and encodes them using the encoding vector transmitted along with the received message.

www.manaraa.com

138

6. Finally, it checks if the hash of the received message (calculated in step 4) equals the

combination of the hashes embedded in corresponding MACs (obtained in step 5). If

equals, the verification succeeds. Otherwise, the received message is assumed to be

polluted and will be discarded.

For example, if a node receives E = Mi ⊕Mj , and finds that it can decrypt MACi,l and

MACj,l of messages Mi and Mi. From the decrypted MACs, it further knows that the MACs

are calculated from the codewords of indexes x, y and z, then it checks if

ex ⊕ ey ⊕ ez = hi,l ⊕ hj,l , (6.10)

where ex, ey and ez are the corresponding codewords of message E, and hi,l and hj,l are the

hashes encrypted in MACi,l and MACj,l. When equation (6.10) is satisfied, the node accepts

message E. Otherwise, it discards E.

6.4.3 Batch Verification

Our scheme supports batch verification, which can further reduce computation overhead

and speed up message verification. Suppose a node receives three messages Ea, Eb and Ec.

For XOR network coding, it generates a new message E = Ea ⊕Eb ⊕Ec. For normal network

coding, it first chooses three random coefficients γa, γb, and γc, then, generates a new message

E = γaEa+γbEb+γcEc. The node further calculates E’s encoding vector as an XOR or linear

combination (with coefficients γa, γb, and γc) of those of messages Ea, Eb and Ec. And it also

attaches to E all unique MACs appended to Ea, Eb and Ec. Finally, it verifies E as normal.

If the new message passes verification, all the input messages are accepted. Otherwise, one

or more messages must have been polluted. In this case, further verification should be carried

out to find the malicious one(s). The node needs to re-check each input message individually or

use batch verification repeatedly on the subsets of input messages. For example, we can speed

up re-checking by using binary-checking, that is similar to binary-search algorithm. Binary-

checking rules out a half of input messages at each step. That is, we encode and check each

half of input messages separately. If pass, that half of messages will be accepted. Otherwise,

www.manaraa.com

139

two sub-halves of the suspected half will be re-checked. This binary-checking process can be

iteratively carried out until all polluted messages are found.

6.5 Performance Analysis

6.5.1 Threat Analysis

A polluted message defined in inequality (6.4) is one whose contents are not consistent with

its encoding vector. It can be generated by an adversary in different ways. We analyze these

ways and discuss possible countermeasures as follows:

• If the adversary has no shared keys with the source, it may randomly pollute a message

(or the MACs attached to the message). This pollution can be easily detected, since the

adversary does not know how to generate valid MACs without any shared keys.

• If the adversary has one shared key, it knows what codewords are authenticated by the

corresponding MAC. Then, it may pollute those codewords of a message and generate a

false MAC matching the polluted codewords. For XOR coding, a smarter adversary can

even simply pollute a message by exchanging the positions of two codewords without the

need of generating a false MAC. Since our scheme allows one codeword to be authenti-

cated by multiple MACs, this pollution can be detected from another unpolluted MAC

that happens to authenticate only one exchanged (or polluted) codeword. One exception

is that if the unpolluted MAC happens to authenticate both (exchanged) codewords,

it cannot detect the pollution. But the possibility of this exception can be reduced by

carefully controlling the codewords in each MAC. In addition, this exception does not

exist in the case of normal network coding, because the same codewords are combined

with different coefficients in different MACs.

• An adversary may try to replace all the MACs of a polluted message with those MACs

generated using its own keys. However, this pollution can be detected by comparing

the key indexes contained in the polluted message with those in a unpolluted message,

because all messages should contain the same key indexes.

www.manaraa.com

140

• A more severe attack is collusion. Colluded adversaries have more knowledge of the

shared keys. Once they find all of the source keys, no polluted message can be detected.

The only way for addressing collusion attacks is to increase the number of MACs attached

to each message. Following the assumption adopted in [90], we assume that there exists

a upper bound of the number of source keys known by colluding nodes and it is never

greater than the total number of source keys.

6.5.2 Security Analysis

In the section, we study the performance of our scheme in terms of the probability that a

polluted message can be detected and the average number of hops that the polluted message

can travel. For convenience of analysis, we simply assume that each message is attached with

only t MACs. This makes sense, because all the MACs attached to a message are encrypted

using only t keys, irrespective of how many MACs that the message really has. From the

perspective of encryption/decryption, all MACs encrypted with the same key are actually as

one MAC.

To simplify our analysis, we further assume that the adversary generates a polluted message

by exchanging only the positions of exactly two codewords of a normal encoded message.

We call those two codewords polluted codewords. More specifically, given a normal message

with t MACs, the adversary first checks out how many shared keys he has and identifies the

corresponding MACs that he can decrypt. We call these MACs revealed MACs and others

unrevealed MACs. Then, the adversary chooses two codewords in such a way that no revealed

MACs need to be modified, when the positions of these two codewords are exchanged. For

example, he can choose two codewords that both occur in some revealed MACs, but neither

of them occurs in other revealed ones. In a word, to analyze the security performance of our

scheme, we consider such an extreme case that the adversary makes the least modification to

the normal message in order to generate the polluted one.

In the extreme case, the polluted message can only be detected by using the unrevealed

MACs. In fact, only those unrevealed MACs that contain exactly one polluted codeword are

www.manaraa.com

141

useful for detection. We call those useful unrevealed MACs effective MACs. Our purpose is

to calculate the number of hops that the polluted message can travel based on the number of

effective MACs it has and the probability that it has that number of effective MACs.

Suppose that the adversary compromises one forwarder. He can obtain t keys from the

compromised forwarder, where these keys are randomly picked from a global key pool of size

|K|. Given a certain source key, let pk denote the probability that any forwarder (including

the compromised one) shares this key with the source, where subscript k implies shared keys.

We have

pk =
t

|K|
. (6.11)

Equivalently, pk is also the probability that the adversary can decrypt exactly one MAC of

the normal message, or the probability that one MAC of the message becomes a revealed one.

Considering totally t MACs of the message, the probability that the message has exactly x

revealed MACs is

Prev(x) =

 t

x

 pxk(1− pk)t−x , (6.12)

where subscript rev implies revealed MACs,

 t

x

 denotes the combination of choosing x

MACs from t MACs and x ∈ [0, t].

Given x revealed MACs (or (t− x) unrevealed MACs equivalently), we can calculate how

many effective MACs that the message can have and what the probability is for the message

to have that number of effective MACs. In our scheme, each MAC authenticates u codewords

out of m ones of the message. That is, each codeword can occur in an MAC with probability

u
m . Given two polluted codewords, the probability that an MAC contains exactly one polluted

codeword is

pe = 2
u

m
(1− u

m
) . (6.13)

pe is also the probability that one unrevealed MAC can become an effective one, where subscript

e implies effective MACs.

www.manaraa.com

142

Now, let Peff |rev(x, y) denote the probability that the message has exactly y effective

MACs, given that it already has x revealed MACs, where subscript eff |rev implies effective

MACs given revealed MACs and y ∈ [0, t− x]. Peff |rev(x, y) can be calculated as

Peff |rev(x, y) =

 t− x

y

 pye(1− pe)t−x−y . (6.14)

If the polluted message has one effective MAC, it can be detected by a receiving node

with probability pk, which is the probability that the receiving node can decrypt the effective

MAC. Let Pdet|eff (y) denote the probability that the polluted message can be detected, given

that it has exactly y effective MACs, where subscript det|eff implies detection probability given

effective MACs. We can easily find that

Pdet|eff (y) = 1− (1− pk)y . (6.15)

Now, we are able to calculate the average number of hops that the polluted message can

travel. We define Hmax as the length of the longest path from the source to a sink, and simply

assume that the polluted message can always travel Hmax hops, when it is not detected. Let

Havg|eff (y) denote the average number of hops that the polluted message can travel, given

that it has exactly y effective MACs, where subscript avg|eff implies average number of hops

given effective MACs. We derive that

Havg|eff (y) =
Hmax∑
z=1

z Pdet|eff (y)
(
1− Pdet|eff (y)

)z−1

+
(
1− Pdet|eff (y)

)Hmax Hmax . (6.16)

In this equality, Pdet|eff (y)
(
1− Pdet|eff (y)

)z−1 denotes the probability that the polluted mes-

sage can travel exactly z hops, and
(
1− Pdet|eff (y)

)Hmax denotes the probability that none of

Hmax nodes can detect the polluted message.

Then, we define Havg|rev(x) as the average number of hops that the polluted message can

travel, given that it has exactly x revealed MACs, where subscript avg|rev implies average

number of hops given revealed MACs. It is easy to know that

Havg|rev(x) =
t−x∑
y=0

Peff |rev(x, y)Havg|eff (y) . (6.17)

www.manaraa.com

143

Hence, when x takes all values from 0 to t, we can derive Havg, the average number of hops

that the polluted message can travel, as follows

Havg =
t∑

x=0

Prev(x)Havg|rev(x) . (6.18)

When the adversary compromises more nodes, he can obtain more keys, instead of only

t keys. We can perform security analysis almost the same way, as long as we change (i.e.,

increase) probability pk in equation (6.11) according to the actual number of keys that the

adversary obtains.

6.5.3 Analysis of Communication Overhead

As shown in equation (6.5), our scheme attaches t MACs and indexes of encryption keys

to an original message, which increases communication overhead, especially for some resource-

constrained networks such as wireless sensor networks. To study the communication overhead,

we compare the bit-length of the attached MACs with that of the original message.

Let us first consider a source message, which has m codewords with each of log2 q bits.

So, the bit-length of a source message is m log2 q. With our scheme, the source message is

attached with t MACs. Each MAC contains: (1) one index of random key, which is of log2 |K|

bits; (2) one random seed used to identify the indexes of codewords, which is of log2m bits;

and (3) the hash which has the same length as a codeword, that is, log2 q bits. Our scheme

also attaches the indexes of t keys to each source message and each index is of log2 |K| bits.

To further reduce the length of a message, we can attach only one index of key, instead of t

indexes to the message, where other (t − 1) indexes form a hash chain that can be generated

from the attached index. Hence, our scheme attaches t(log2 |K| + log2m + log2 q) + log2 |K|

bits to each source message and introduces communication overhead

t(log2 |K|+ log2m+ log2 q) + log2 |K|
m log2 q

. (6.19)

Typically, t = 5 ∼ 10, where |K| and m are both less than 256 and q is 256-bit long. log2 |K|

and log2m are negative when compared to log2 q. Hence, the communication overhead for

source messages can be reduced to t
m ' 2% ∼ 4%.

www.manaraa.com

144

However, the communication overhead for an encoded message may be much higher than

that for a source message. If an encoded message is computed from x source messages, it will

be attached with all MACs of those source messages. Hence, the communication overhead is

x times higher. When x = 10, the overhead is xt
m ' 20% ∼ 40%. This is a drawback of our

scheme.

6.6 Experimental Results

6.6.1 Experiment Setup

We evaluate the performance of our scheme in experiments that consist of two parts. First,

we study the impact of different parameters such as t, u and K on filtering capacity of our

scheme. Second, we compare our scheme with others in terms of computation overhead. We

test various schemes on both PC and MicaZ sensor node, where the implementation of these

schemes is built on top of software package MIRACL [57] (on PC) and Wang’s software package

[76] (on MicaZ). For CJL’s scheme, we implement the Tate pairing [28] over a super-singular

elliptic curve E(Fp) : y2 = x3 +1. For our scheme, we choose SHA-1 for hash chain generation,

and AES (on PC) and SkipJack (on MicaZ) for encryption/decryption.

6.6.2 Detection Capability

We measure the detection capability of our scheme by Havg, the number of hops a polluted

message travels. In our experiments, the polluted message is generated by exchanging the

positions of two codewords. Given Hmax = 20 (i.e., the polluted message can travel at most

20 hops), m = 256 (i.e., each message contains 256 codewords), Havg can be affected by

parameters t, u and |K|. We study the impact of these parameters separately.

Figure 6.1 illustrates Havg as a function of various u. The best detection capability is

achieved when u ' 128 = m
2 , which means the polluted message can be detected the most

rapidly as each MAC authenticates about half number of codewords of the message. For

example, given t = 10, the polluted message can travel around 3 hops when u = 128. However,

when u is either 16 or 240, the message will not be detected within 11 hops. This makes

www.manaraa.com

145

0

2

4

6

8

10

12

14

16

18

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
u: Number of codewords of each MAC

H
av

g:
 N

u
m

b
er

 o
f

h
o

p
s

a
p

o
llu

te
d

 m
es

sa
g

e
tr

av
el

s t=5

t=6

t=7

t=8

t=9

t=10

Figure 6.1 Impact of u to Havg, where Hmax = 20, m = 256 and |K| = 100.

sense, because: (1) when u is too small, a unrevealed MAC is less likely to authenticate a

polluted codeword and the message can travel longer; and (2) when u is too big, both polluted

codewords are more likely to be authenticated in the same unrevealed MACs and hence prevent

the message from being detected.

In Figure 6.1, we can observe that the bigger the value of t, the faster the polluted message

can be dropped, while this trend is more clearly shown in Figure 6.2. For example, when

0

2

4

6

8

10

12

14

16

5 6 7 8 9 10
t: Number of MACs of each message

H
av

g:
 N

u
m

b
er

 o
f

h
o

p
s

a
p

o
llu

te
d

 m
es

sa
g

e
tr

av
el

s

u=32

u=224

u=64

u=192

u=96

u=160

u=128

Figure 6.2 Impact of t to Havg, where Hmax = 20, m = 256 and |K| = 100.

www.manaraa.com

146

u = 128, the polluted message can travel more than 8 hops in the case of t = 5, however, it will

be dropped after traveling 3 hops when t = 10. It is obviously that the detection capability

can be improved by attaching more MACs to the transmitted messages.

The size of key pool |K| also affects the detection capability deeply. Basically, the smaller

the size of key pool, the easier a forwarder to find out some shared keys with the source, hence,

the sooner the polluted message to be detected. Figure 6.3 illustrates the impact of |K| to

0

2

4

6

8

10

12

14

25 50 75 100 125 150 175 200
|K|: Size of key pool

H
av

g:
 N

u
m

b
er

 o
f

h
o

p
s

a
p

o
llu

te
d

 m
es

sa
g

e
tr

av
el

s

t=5

t=6

t=7

t=8

t=9

t=10

Figure 6.3 Impact of |K| to Havg, where Hmax = 20, m = 256 and u = 128.

detection capability, where we always set u = 128. As shown in Figure 6.3, when t = 5, the

polluted message can travel around 4.3 hops in the case of |K| = 25. However, when |K| = 200,

the message can travel more than 12 hops. Generally, a smaller key pool performs better in

terms of detection capability. However, we do not prefer a key pool which is too small, because

the adversary otherwise is able to obtain all the keys from the pool by compromising a few

nodes, which makes a polluted message undetectable.

Moreover, it is not always true that a smaller key pool is better. Obviously, when the key

pool size is close to t, almost all keys are revealed to the adversary. Hence, no node can detect

the polluted message. Figure 6.4 shows this trend. We can see that when the key pool size is

smaller than 15, the detection capability becomes worse as the size decreases. Combining the

resultsof Figure 6.3 and Figure 6.4, we find that the optimal key pool size (for achieving the

www.manaraa.com

147

0

2

4

6

8

10

12

14

16

18

20

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
|K|: Size of key pool

H
av

g:
 N

u
m

b
er

 o
f

h
o

p
s

a
p

o
llu

te
d

 m
es

sa
g

e
tr

av
el

s t=5

t=6

t=7

t=8

t=9

t=10

Figure 6.4 Impact of |K| to Havg, where Hmax = 20, m = 256 and u = 128.

best detection capability) is between 15 and 20. However, as we already discuss, we cannot

choose such a small key pool. So, in the rest experiments, we set |K| = 100.

In our scheme, the indexes of codewords authenticated by each MAC are calculated from a

hash chain in order to reduce communication overhead. We also test a variant of our scheme,

that is, we generate each index randomly and embed the whole sequence of indexes into each

MAC. In this variant, we do not consider communication overhead and only study if a hash

chain is as random as a normal random sequence. We find that the variant has similar perfor-

mance to our original scheme in terms of detection capability. For space limit, we do not show

experimental results here.

6.6.3 Computation Overhead

We compare the computation overhead of CJL’s scheme, Yu’s scheme, GR’s scheme, and

our scheme. The overhead is measured by running time of each phase of these schemes. First,

we run our test on a Pentium-4 3.0 GHz Linux PC, and set m = 256, n = u = 128 and t = 5

for the schemes. Experimental results are shown in Table 6.2. For our scheme, we test two

variants depending on whether the indexes of codewords in MACs are a random sequence or

a hash chain, where these two variants are denoted denoted as Random Sequence and Hash

www.manaraa.com

148

Chain in Table 6.2. Since CJL’s scheme, Yu’s scheme, and GR’s scheme can only deal with

normal linear coding, rather than XOR coding, we test our scheme in both scenarios.

Experimental results in Table 6.2 show that, CJL’s scheme is 5 to 10 times slower than

Yu’s scheme and GR’s scheme, while our scheme is 200 to 1000 times faster than others.

Generally speaking, the reason is that CJL’s scheme, Yu’s scheme and GR’s scheme are based

on expensive public-key operations, but our scheme only adopts symmetric-key operations.

In parameter setup phase, CJL’s scheme must generate (m+ n+ 1) q-torsion points, GR’s

scheme should choose m order-q elements, and our scheme only need to generate t random

sequences or hash chains, where each sequence or chain has u elements. (To see the time

difference between random sequences and hash chains generation, we move them from the

second phase to the first one.) Table 6.2 shows that choosing q-torsion is the most time-

consuming. We can also see that in our scheme, generating t hash chains takes 20× the time

for creating t random sequences. Since adopting hash chain is useful for reducing the length of

messages, it provide us a tradeoff between computation efficiency and communication overhead.

In the second phase, to calculate signature or hash or MAC of one message, CJL’s scheme

takes 5.37s on linear combinations of (m+ n) q-torsion points. Yu’s scheme and GR’s scheme

spend 1.42s and 0.96s on m+n+ 1 and m modular exponentiations, respectively. Meanwhile,

our scheme only needs 5.56ms for t · u modular multiplications as well as t AES encryptions.

Compared to that of other schemes, the computation time of our scheme is negative.

In the third phase, to verify one message, CJL’s scheme needs 16.54s on (m + n) paring

operations. Yu’s scheme and GR’s scheme require 1.44s and 1.43s for (m + n + 1) and (m +

n) modular exponentiations, respectively. In our scheme, we assume an encoded message is

computed from n
2 source messages and the receiving node has only one shared key. So, our

scheme must conduct (u+ n
2) modular multiplications, n2 AES decryptions, and one hash chain

generation, which takes only 2.74ms in total. These results prove that pairing operation is

extremely time-consuming.

We test Yu’s scheme, GR’s scheme and our scheme on MicaZ mote. (The implementation

of CJL’s scheme on MicaZ mote is still in progress.) MicaZ mote is only equipped with an

www.manaraa.com

149

T
ab

le
6.

2
C

om
pu

ta
ti

on
ov

er
he

ad
of

di
ffe

re
nt

sc
he

m
es

on
P

en
ti

um
-4

3.
0G

H
z

P
C

(p
:

10
24

-b
it

,q
:

25
6-

bi
t,
m

=
25

6,
n

=
u

=
12

8
an

d
t=

5)

C
JL

’s
Y

u
’s

G
R

’s
O

u
r

S
ch

em
e

S
ch

em
e

S
ch

em
e

S
ch

em
e

H
as

h
C

h
ai

n
R

an
d

om
S

eq
u

en
ce

L
in

ea
r

X
O

R
L

in
ea

r
X

O
R

P
ar

am
et

er
S

et
u

p
10

.6
5
s

2.
87

s
2.

85
s

0.
81

m
s

0.
04

m
s

(p
er
n

m
es

sa
ge

s)
H

as
h

C
al

cu
la

ti
on

5.
37

s
1.

42
s

0.
96

s
5.

50
m
s

0.
33

m
s

5.
56

m
s

0.
36

m
s

(p
er

m
es

sa
ge

)
M

es
sa

ge
V

er
ifi

ca
ti

on
16

.5
4
s

1.
44

s
1.

43
s

2.
74

m
s

1.
83

m
s

2.
55

m
s

1.
66

m
s

(p
er

m
es

sa
ge

&
pe

r
ke

y)

www.manaraa.com

150

8-bit microprocessor ATmega128, 4K bytes memory (RAM) and 128K bytes program flash

memory (ROM). Since it is extremely resource-constrained, we have to relax our security

requirement. In our implementation, we set p as 256-bit prime, q as 128-bit prime, m=16 and

n=8. Experimental results in Table 6.3 show that Yu’s scheme and GR’s scheme need around

100s to generate a hash for a message and 150s to verify one message. It indicates that the

public-key based approaches are not affordable for resource-constrained wireless networks. On

the contrary, our scheme takes at most 32ms to generate MACs for a source message and

less than 20ms to verify a message, which means our scheme is quite suitable for wireless

sensor networks. Moreover, Table 6.3 shows that XOR coding is more efficient than normal

linear coding, so it is promising for using in wireless sensor networks. Since only our scheme

can address pollution attacks to XOR coding, it further proves that our scheme is especially

suitable for resource-constrained networks such as wireless sensor networks.

Note: the verification phase of Zhao’s scheme requires the same number of modular ex-

ponentiations as GR’s scheme does. So, although we do not test Zhao’s scheme on PC and

MicaZ, we can conclude that our scheme is much more efficient than Zhao’s scheme.

6.7 Conclusion and Future Work

In this work, we propose an efficient scheme against pollution attacks for securing the sys-

tems adopting XOR (and normal linear) network coding. In our scheme, the source generates

MACs for each message using its random keys, and the forwarders attach to each encoded

message the MACs of the source messages that are used to encode the message. Since each

MAC authenticates some number of codewords of the message, a forwarder with some shared

keys can verify an encoded message using the corresponding MACs. To prevent the compro-

mised forwarders from polluting the codewords using the revealed MACs, we let each codeword

authenticated by multiple MACs. By carefully controlling the overlapping codewords authen-

ticated by different MACs, we achieve that a polluted message can be detected within several

hops with high probability. To the best of our knowledge, our scheme is the first one that

address pollution attacks for XOR coding. It does not rely on any extra secure channels and

www.manaraa.com

151

T
ab

le
6.

3
C

om
pu

ta
ti

on
ov

er
he

ad
of

di
ffe

re
nt

sc
he

m
es

on
M

ic
aZ

se
ns

or
no

de
(p

:
51

2-
bi

t,
q:

12
8-

bi
t,
m

=
16

,
n

=
u

=
8

an
d
t=

5)

Y
u

’s
G

R
’s

O
u

r
S

ch
em

e
S

ch
em

e
S

ch
em

e
H

as
h

C
h

ai
n

R
an

d
om

S
eq

u
en

ce
L

in
ea

r
X

O
R

L
in

ea
r

X
O

R
P

ar
am

et
er

S
et

u
p

1.
61

s
1.

56
s

45
.9

4
m
s

0.
32

m
s

(p
er
n

m
es

sa
ge

s)
H

as
h

C
al

cu
la

ti
on

14
7.

36
s

99
.7

9
s

31
.2

0
m
s

4.
57

m
s

31
.7

1
m
s

4.
68

m
s

(p
er

m
es

sa
ge

)
M

es
sa

ge
V

er
ifi

ca
ti

on
15

5.
14

s
14

9.
70

s
18

.7
5
m
s

12
.5

0
m
s

9.
42

m
s

3.
10

m
s

(p
er

m
es

sa
ge

&
pe

r
ke

y)

www.manaraa.com

152

is extremely efficient. The experimental simulation results show that it is 200 or even 1000

times faster than existing ones, so it is parti suitable for resource-constrained networks such

as wireless sensor networks.

Our scheme falls into the category that allows the forwarders to filter polluted attacks. On

the contrary, Jaggi’s scheme can recover the source messages at the sinks without the help of

the forwarders. Although Jaggi’s scheme introduce no interference with the forwarders, it has

several disadvantages. First, it makes a great sacrifice in network throughput, because it has

to tolerate pollution propagation. In our scheme, if a forwarder finds a pollution message, it

can drop the message and encode the unpolluted messages using a new encoding vector. Ho

et al. [34] proved that a random generated network code allows the sinks to recover the source

messages with a high probability, so our scheme can keep a higher source rate. Second, Jaggi’s

scheme does not take the forwarders’ energy consumption into consideration, while our scheme

is more suitable for resource-constrained wireless networks by filtering the polluted messages

as early as possible. Third, the success of Jaggi’s scheme is determined by the estimation to

the power of adversaries. However, it is very hard to make an accurate estimation. So, it has

to reduce source data rate by overestimating the adversarial capability. Otherwise, the whole

scheme becomes failed.

In this work, we assume that the source is never compromised. In the future, we will study

how to detect the forged messages injected by false or compromised source(s). In addition, we

will implement CJL’s signature scheme on MicaZ mote and conduct experimental evaluation.

www.manaraa.com

153

CHAPTER 7 SUMMARY

7.1 Conclusion

In this research, we focus on enhancing information assurance for resource-constrained

wireless networks such as wireless sensor networks. Particularly, we study three important

problems: (1) key management for wireless sensors networks, (2) filtering false data injection

and DoS attacks in wireless sensor networks, and (3) secure network coding. Solving these

problems provide enhancements for several aspects of information assurance such as confiden-

tiality, authenticity, availability and integrity.

We investigate various malicious attacks in wireless sensor networks and propose a number

of practical solutions for wireless sensor networks for establishing pairwise keys between sensor

nodes, detecting and filtering false data injection and DoS attacks, and securing network coding

against pollution attacks. Our solutions are efficient for wireless sensor networks in terms of

transmission range, memory cost, computation and communication overhead.

In summary, our contributions from this research are fourfold.

1. We classify the malicious attacks into different categories and provide a taxonomy of

these attacks.

2. For enhancing confidentiality, we design a group-based key pre-distribution scheme using

deployment knowledge for wireless sensor networks to establish pair-wise keys between

sensor nodes. Compared with others, our scheme achieves higher connectivity with lower

memory cost and shorter transmission range. It also outperforms others in terms of

resilience against node capture attacks.

3. For enhancing authenticity and availability, we propose a dynamic en-route scheme for

www.manaraa.com

154

filtering false data injection in wireless sensor networks. Compared with others, our

scheme offers higher filtering capacity with lower memory cost. It can effectively mitigate

the impact of DoS attacks and better deal with dynamic topology of wireless sensor

networks.

4. For enhancing integrity, we present several schemes for securing network coding against

pollution attacks. Our solution is the first one that addresses security problem for XOR

network coding systems. Compared with others, our schemes do not need any extra

security channels and can improve computation efficiency by two to three orders of mag-

nitude. Hence, our solutions are promising for resource-constrained wireless networks.

7.2 Future Work

To provide efficient key management for wireless sensor networks, we propose a solution

for establishing pairwise key between sensor nodes. However, within this research area, there

are many other problems that have not been well solved. Some of the problems that we want

to study in the future include end-to-end key establishment, group key management and key

revocation.

• An end-to-end key is required when two nodes far away from each other want to ex-

change their own information. It may be established by exploiting the pairwise keys of

multiple hops or with the help of the base station. However, either approach involves

high communication overhead and is head to be applied into wireless sensor networks.

• Group key management is another challenging problem. Group keys are highly desired in

wireless sensor networks, because sensor nodes are often organized into groups or clusters

to detect the events occurring locally. However, sensor nodes may frequently join and

leave their groups due to unexpected failures, temporary disconnection, or node renew.

Therefore, it is very hard to maintain group keys with low communication overhead

while keeping strong resilience to key disclosure in wireless sensor networks. In addition,

www.manaraa.com

155

group keys are often required to be self-healing for accommodating unreliable wireless

communication, which greatly increases the complexity of group key management.

• Another untouched problem in key management is the revocation of compromised keys

(or nodes). Majority voting is a promising solution to this problem. However, it cannot

be applied trivially, because the compromised nodes whose keys should be revoked can

also make use of the votes to attack benign nodes. A carefully designed voting scheme

is necessary to tackle the key revocation problem.

For filtering false data injection and DoS attacks in wireless sensor networks, we come

up with a solution that allows neighbor nodes to mutually monitor each other by exploiting

the broadcast nature of wireless communication. However, this mutual monitoring approach

brings two problems:

• Wireless communication is essentially unreliable and may not be bi-directional, which

pose challenges to the implementation of mutual monitoring. We may enforce retrans-

mission to overcome unreliability or eliminate directional links. However, this incurs high

communication overhead and is inefficient for wireless sensor networks.

• Mutual monitoring requires that sensor nodes be awake always or within a long period.

This causes conflicts with many energy-efficient approaches that turn off sensor nodes

frequently to save energy of sensor nodes.

We will further investigate these two problems and keep on improving our proposed solution.

For defending network coding against pollution attacks, we design a homomorphic signature

scheme for securing normal network coding and further present a MAC-based approach for

XOR network coding (including normal network coding). In the future, we would investigate

other malicious attacks against network coding systems and study how to address them in the

environments of wireless sensor networks. Some possible attacks that we have identified are as

follows:

• So far, we assume there exists a single source within the networks. However, in wire-

less sensor networks, it is quite likely that multiple sensor nodes may broadcast their

www.manaraa.com

156

information simultaneously. In a network coding system with multiple sources, existing

solutions addressing pollution attacks are no longer applicable, because the signatures (or

the MACs) generated by different sources using different keys (or using different code-

words) cannot be encoded together. So, multi-source poses new challenge to securing

network coding against pollution attacks.

• Besides pollution attacks, the adversaries have other ways to prevent the sinks from

recovering source messages. They can either selectively drop some messages, or generate

new messages that are linearly dependent on previous ones. The purpose of both ways is

to reduce the number of linearly independent messages received by the sinks. Introducing

redundancy of source messages can solve the problem, however, it reduces the throughput

of networks.

• The adversaries may even insert some false sources into network coding systems, which

violates the security goal of authenticity. Our homomorphic signature scheme provides

authenticity, however, our solution for XOR coding based on symmetric keys does not.

So, how to achieving authenticity and integrity in XOR coding systems simultaneously

is still an unsolved problem.

www.manaraa.com

157

BIBLIOGRAPHY

[1] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network Information Flow”, IEEE Transac-

tions on Information Theory, Vol. 46, No. 4, pp. 1204–1216, 2000.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, ”A Survey on Sensor Net-

works”, IEEE Communications Magazine, Vol. 40, No. 8, pp. 102–114, 2002.

[3] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, ”Wireless Sensor Networks:

A Survey”, Computer Networks, Vol. 38, No. 4, pp. 393–422, 2002.

[4] P. Barreto, H. Kim, B. Lynn, and M. Scott, “Efficient Algorithms for Pairing-Based

Cryptosystems”, in Proc. 22nd Annual International Cryptology Conference on Advances

in Cryptology, LNCS, Vol. 2442, pp. 354–368, 2002.

[5] M. Bellare, J. Garay, and T. Rabin, “Fast Batch Verification for Modular Exponentiation

and Digital Signatures”, in Proc. Advances in Cryptology (EUROCRYPT’98), LNCS, Vol.

1403, pp. 236–250, 1998.

[6] K. Bhattad and K. Narayanan, “Weakly Secure Network Coding”, in Proc. 1st Workshop

on Network Coding, Theory, and Applications (NetCod), 2005.

[7] S. Biswas and R. Morris, “ExOR: Opportunistic MultiHop Routing for Wireless Networks”

in Proc. ACM SIGCOMM, pp. 133–143, 2005.

[8] R. Blom, “An optimal class of symmetric key generation systems”, in Proc. EUROCRYPT,

Advances in Cryptology, LNCS, Vol. 209, Springer, pp. 335–338, 1985.

www.manaraa.com

158

[9] C. Blundo, A. Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M. Yung, “Perfectly-secure

key distribution for dynamic conferences”, in Proc. CRYPTO, Advances in Cryptology,

LNCS 740, Springer, pp. 471–486, 1993.

[10] D. Braginsky, and D. Estrin, “Rumor Routing Algorithm for Sensor Networks”, in Proc.

WSNA, pp. 22–31, 2002.

[11] BTnode, http://www.btnode.ethz.ch/.

[12] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less Low Cost Outdoor Localization for

Very Small Devices”, IEEE Personal Communications Magazine, Vol. 7, No. 5, pp. 28–34,

2000.

[13] N. Cai and R. Yeung, “Secure Network Coding”, in Proc. International Symposium on

Information Theory (ISIT), 2002.

[14] S. Capkun, and J. Hubaux, “Secure Positioning of Wireless Devices with Application to

Sensor Networks”, in Proc. IEEE INFOCOM, 2005.

[15] D. Carman, B. Matt, and G. Cirincione, “Energy-efficient and Low-latency Key Manage-

ment for Sensor Networks”, in 23rd Army Science Conference, 2002.

[16] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading Structure for Randomness

in Wireless Opportunistic Routing”, in Proc. ACM SIGCOMM, pp. 169–180, 2007.

[17] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes for sensor net-

works”, in Proc. IEEE Symposium on Security and Privacy, pp. 197–213, 2003.

[18] H. Chan, and A. Perrig, ”PIKE: Peer Intermediaries for Key Establishment in Sensor

Networks”, in IEEE INFOCOM, 2005.

[19] D. Charles, K. Jian, and K. Lauter, “Signature for Network Coding”, Technique Report

MSR-TR-2005-159, Microsoft, 2005.

[20] P. Chou, Y. Wu, and K. Jain, “Practical Network Coding”, in Proc. Allerton Conference

on Communication, Control, and Computing, 2003.

www.manaraa.com

159

[21] Committee on National Security Systems (CNSS) Instruction No. 4009,

http://www.cnss.gov/Assets/pdf/cnssi 4009.pdf.

[22] W. Du, J. Deng, Y. S. Han, and P. K. Varshney, “A pairwise key pre-distribution scheme

for wireless sensor networks”, in Proc. ACM CCS, pp. 42–51, 2003.

[23] W. Du, J. Deng, Y. S. Han, S. Chen, and P. K. Varshney, “A key management scheme for

wireless sensor networks using deployment knowledge”, in Proc. IEEE INFOCOM, 2004.

[24] B. Dutertre, S. Cheung, and J. Levy, “Lightweight Key Management in Wireless Sensor

Networks by Leveraging Initial Trust”, SRI Int., Tech. Rep. SRI-SDL-04-02, 2004.

[25] L. Eschenauer, and V. D. Gligor, “A key-management scheme for distributed sensor net-

works”, in Proc. ACM CCS, pp. 41–47, 2002.

[26] J. Feldman, T. Malkin, C. Stein, and R. Servedio, “On the Capacity of Secure Network

Coding”, in Proc. 42nd Annual Allerton Conference on Communication, Control, and

Computing, 2004.

[27] C. Fragouli, J. Boudec, and J. Widmer, “Network Coding: An Instant Primer”, ACM

SIGCOMM Computer Communication Review, Vol. 36, No. 1, 2006.

[28] S. Galbraith, K. Harrison, and D. Soldera, “Implementing the Tate Pairing”, in Proc. 5th

Algorithmic Number Theory Symposium (ANTS V), LNCS, Vol. 2369, pp. 324–337, 2002.

[29] C. Gkantsidis and P. Rodriguez, “Network Coding for Large Scale File Distribution”, in

Proc. IEEE INFOCOM, 2005.

[30] C. Gkantsidis and P. Rodriguez, “Cooperative Security for Network Coding File Distri-

bution”, in Proc. IEEE INFOCOM, 2006.

[31] P. Gupta, and P. R. Kumar, “Critical power for asymptotic connectivity in wireless net-

works”, in Stochastic Analysis, Control, Optimization and Applications: A Volume in

Honor of W. H. Fleming, pp. 547–566, 1998.

www.manaraa.com

160

[32] N. Gura, A. Patel, A. Wander, H. Eberle, and S. Shantz, “Comparing elliptic curve

cryptography and RSA on 8-bit CPUs”, in Proc. Workshop on Cryptographic Hardware

and Embedded Systems (CHES), LNCS, Vol. 3156, Springer, pp. 119–132, 2004.

[33] T. He, C. Huang, B. Blum, J. Stankovic, and T. Abdelzaher, “Range- Free Localization

Schemes in Large Scale Sensor Network”, in Proc. ACM MobiCom, pp. 81–95, 2003.

[34] T. Ho, R. Koetter, M. Médard, R. Karger, and M. Effros, “The Benefits of Coding over

Routing in a Randomized Setting” in Proc. International Symposium on Information

Theory (ISIT), 2003.

[35] T. Ho, B. Leong, R. Koetter, M. Méard, M. Effros, and D. Karger, “Byzantine Modifica-

tion Detection in Multicast Networks Using Randomized Network Coding”, in Proc. 2004

IEEE International Symposium on Information Theory (ISIT), 2004.

[36] D. Huang, M. Mehta, D. Medhi, and L. Harn, ”Location-aware Key Management Scheme

for Wireless Microsensor Networks”, in ACM SASN, 2004.

[37] D. Hwang, B. Lai, and I. Verbauwhede, “Energy-memory-security Tradeoffs in Distributed

Sensor Networks”, in ADHOC-NOW, LNCS, Vol. 3158, 2004.

[38] J. Hwang, and Y. Kim, “Revisiting Random Key Pre-distribution for Sensor Networks”,

in ACM SASN, 2004.

[39] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Méard, “Resilient Network

Coding in the Presence of Byzantine Adversaries”, in Proc. IEEE INFOCOM, 2007.

[40] K. Jain, “Security Based on Network Topology against the Wiretapping Attack”, IEEE

Wireless Communications, Vol. 11, No. 1, pp. 68-71, 2004.

[41] A. Joux, “The Weil and Tate Pairings as Building Blocks for Public Key Cryptosystems”,

in Proc. 5th Algorithmic Number Theory Symposium (ANTS V), LNCS, Vol. 2369, pp.

20–32, 2002.

www.manaraa.com

161

[42] C. karlof, and D. Wagner, “Secure Routing in Wireless Sensor Networks: Attacks and

Countermeasures”, in Proc. 1st IEEE Int. Workshop on Sensor Network Protocols and

Applications, pp. 113–127, 2003.

[43] B. Karp, and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing for Wireless

Networks”, in Proc. ACM MobiCom, pp. 243–254, 2000.

[44] S. Katti, D. Katabi, W. Hu, H. Rahul, and M. Médard, “The Importance of Being Op-

portunistic: Practical Network Coding for Wireless Environments”, in Allerton, 2005.

[45] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft, “XORs in The Air:

Practical Wireless Network Coding”, in Proc. ACM SIGCOMM, pp. 243–254, 2006.

[46] S. Katti, S. Gollakota, and D. Katabi, “Embracing Wireless Interference: Analog Network

Coding”, in Proc. ACM SIGCOMM, pp. 397–408, 2007.

[47] M. Krohn, M. Freeman, and D. Mazieres, “On-the-fly Verification of Rateless Erase Codes

for Efficient Content Distribution”, in Proc. IEEE Symposium on Security and Privacy,

2004.

[48] L. Lazos, and R. Poovendran, “SeRLoc: Secure Range-Independent Localization forWire-

less Sensor Networks”, in Proc. ACM WiSe, pp. 21–30, 2004.

[49] L. Lazos, R. Poovendran, and S. Capkun, “ROPE: Robust Position Estimation in Wireless

Sensor Networks”, in Proc. IPSN, pp. 324–331, 2005.

[50] S. Li, R. Yeung, and N. Cai, “Linear Network Coding”, IEEE Transactions on Information

Theory, Vol 49, No. 2, pp. 371–381, 2003.

[51] D. Liu, and P. Ning, “Establishing pairwise keys in distributed sensor networks”, in Proc.

ACM CCS, pp. 52–56, 2003.

[52] D. Liu, and P. Ning, “Location-based pairwise key establishment for static sensor net-

works”, in ACM SASN, pp. 72–82, 2003.

www.manaraa.com

162

[53] D. Liu, and P. Ning, “Improving key pre-distribution with deployment knowledge in static

sensor networks”, ACM Transactions on Sensor Networks (ToSN), Vol. 1, No. 2, pp. 204–

239, 2005.

[54] A. Menezes, T. Okamoto, and S. Vanstone, “Reducing Elliptic Curve Logorithms to Lo-

gorithms in a Finite Field”, IEEE Transactions on Information Theory, Vol 39, No. 5,

pp. 1639–1646, 1993.

[55] MICAz, http://www.xbow.com/Products/Product pdf files/Wireless pdf/MICAz Datasheet.pdf.

[56] V. Miller, “Short Programs for Functions over Curve”, unpublished manuscript,

http://crypto.stanford.edu/miller/miller.pdf, 1986.

[57] MIRACL, Multiprecision Integer and Rational Arithmetic C/C++ Library,

http://www.shamus.ie/, Shamus Software Ltd.

[58] R. Nagpal, H. Shrobe, and J. Bachrach, “Organizing a Global Coordinate System from

Local Information on an Ad Hoc Sensor Network”, in Proc. IPSN, LNCS, Vol. 2634, pp.

333–348, 2003.

[59] D. Nicolescu, and B. Nath, “Ad-Hoc Positioning Systems (APS)”, in Proc. IEEE GLOBE-

COM, Vol. 5, pp. 2926–2931, 2001.

[60] M. D. Penrose, “The longest edge of the random minimum spanning tree”, The Annals

of Applied Probability, Vol. 7, No. 2, pp. 340–361, 1997.

[61] M. D. Penrose, Geometric Random Graphs, Oxford University Press, 2003.

[62] D. Petrovic, K. Ramchandran, and J. Rabaey, “Overcoming Untuned Radios in Wireless

Networks with Network Coding”, IEEE Transactions on Information Theory, Vol. 52, No.

6, pp. 2649–2657, 2006.

[63] A. Perrig, R. Szewczyk, V. Wen, D. Culer, and J. Tygar, “SPINS: Security Protocols for

Sensor Networks”, in Proc. ACM MobiCom, pp. 189–199, 2001.

www.manaraa.com

163

[64] B. Przydatek, D. Song, and A. Perrig, “SIA: Secure Information Aggregation in Sensor

Networks”, in Proc. ACM SenSys, pp. 255–265, 2003.

[65] S. Ratnasamy, B. karp, L. Yin, F. Yu, D. Estrin, R. Govindan and S. Shenker, “GHT:

A Grographic Hash Table for Data-Centric Storage”, in Proc. 1st ACM International

Workshop on Wireless Sensor Networks and Applications, (WSNA’02), pp. 78–87, 2002.

[66] K. Ren, W. Lou, and Y. Zhang, “LEDS: Providing Location-aware End-to-end Data

Security in Wireless Sensor Networks”, in Proc. IEEE INFOCOM, 2006.

[67] S. Sengupta, S. Rayanchu, and S. Banerjee, “An Analysis of Wireless Network Coding for

Unicast Sessions: The Case for Coding-Aware Routing”, in Proc. IEEE INFOCOM, pp.

1028–1036, 2007.

[68] S. Shakkottai, R. Srikant, and N. Shroff, “Unreliable sensor grids: coverage, connectivity

and diameter”, in Proc. IEEE INFOCOM, 2003.

[69] J. H. Spencer, The Strange Logic of Random Graphs, Springer, 2001.

[70] W. Stallings, Cryptography and Network Security: Principles and Practice, Second Edi-

tion, Prentice Hall.

[71] TelosB, http://www.xbow.com/Products/Product pdf files/Wireless pdf/TelosB Datasheet.pdf.

[72] A. Liu, P. Kampanakis, and P. Ning, TinyECC: Elliptic Curve Cryptography for Sensor

Networks, http://discovery.csc.ncsu.edu/software/TinyECC/.

[73] TinyOS Community Forum, Available: http://www.tinyos.net.

[74] Ubiquitous Computing, http://www.ubiq.com/hypertext/weiser/UbiHome.html.

[75] D. Wang, D. Silva, and F. Kschischang, “Constricting the Adversary: A Broadcast Trans-

formation for Network Coding”, in Proc. 45th Annual Allerton Conference on Communi-

cation, Control and Computing, 2007.

www.manaraa.com

164

[76] H.Wang, and Q. Li, “Efficient implementation of public key cryptosystems on mote sen-

sors”, in Proc. ICICS, LNCS, Vol. 4307, pp. 519–528, 2006.

[77] R. Want, A. Hopper, V. Falcão, and J. Gibbons, ”The Active Badge Location System”,

ACM Transactions on Information Systems (TOIS), Vol. 10, No. 1, pp. 91–102, 1992.

[78] Mark Weiser, http://www.ubiq.com/hypertext/weiser/.

[79] A. Woo, T. Tong, and D. Culler, “Taming the Underlying Challenges of Reliable Multihop

Routing in Sensor Networks”, in Proc. ACM SenSys, pp. 14–27, 2003.

[80] IEEE 802.15 Working Group for Wireless Personal Area Networks (WPAN),

http://ieee802.org/15/.

[81] Y. Wu, P. Chou, and S. Kung,“Information Exchange in Wireless Networks with Network

Coding and Physical-Layer Broadcast”, in Proc. 39th Annual Conference on Information

Sciences and Systems (CISS), 2005.

[82] Xerox PARCTAB, http://www.ubiq.com/parctab/.

[83] Xerox Pad, http://www.ubiq.com/weiser/testbeddevices.htm.

[84] H. Yang, and S. Lu, “Commutative Cipher Based En-route Filtering in Wireless Sensor

Networks”, in Proc. IEEE VTC, Vol. 2, pp. 1223–1227, 2004.

[85] H. Yang, F. Ye, Y. Yuan, S. Lu, and W. Arbaugh, “Toward Resilient Security in Wireless

Sensor Networks”, in Proc. ACM MobiHoc, pp. 34–45, 2005.

[86] F. Ye, H. Luo, S. Lu, and L. Zhang, “Statistical En-route Detection and Filtering of

Injected False Data in Sensor Networks”, in Proc. IEEE INFOCOM, 2004.

[87] Y. Yu, R. Govindan, and D. Estrin, “Geographical and Energy Aware Routing: A Re-

cursive Data Dissemination Protocol for Wireless Sensor Networks”, Computer Science

Department, University of California, Los Angeles, Tech. Rep. UCLA-CSD TR-01-0023,

May 2001.

www.manaraa.com

165

[88] Z. Yu, and Y. Guan, “A key pre-distribution scheme using deployment knowledge for

wireless sensor networks”, in Proc. IEEE/ACM IPSN, 2005, pp. 261–268.

[89] Z. Yu, and Y. Guan, “A robust group-based key management scheme for wireless sensor

networks”, in Proc. IEEE WCNC, Vol. 4, pp. 1915–1920, 2005.

[90] Z. Yu, and Y. Guan, “A Dynamic En-Route Scheme for Filtering False Data Injection in

Wireless Sensor Networks”, in Proc. IEEE INFOCOM, 2006.

[91] Zhen Yu, Yawen Wei, Bhuvaneswari Ramkumar, and Yong Guan, “An Efficient Signature-

based Scheme for Securing Network Coding against Pollution Attacks”, in Proc. IEEE

INFOCOM, 2008.

[92] S. Zhang, S. Liew, and P. Lam, “Hot Topic: Physical-Layer Network Coding”, in Proc.

MobiCom, pp. 358–365, 2006.

[93] F. Zhao, T. Kalker, M. Médard, and K. J. Han, “Signatures for Content Distribution with

Network Coding”, in Proc. International Symposium on Information Theory (ISIT), pp.

556–560, 2007.

[94] Y. Zhou, Y. Zhang, and Y. Fang, ”LLK: A Link-layer Key Establishment Scheme in

Wireless Sensor Networks”, in IEEE WCNC, 2005.

[95] Y. Zhou, Y. Zhang, and Y. Fang, ”Key Establishment in Sensor Networks based on

Triangle Grid Deployment Model”, in IEEE MILCOM, 2005.

[96] S. Zhu, S. Setia, and S. Jajodia, “LEAP: efficient security mechanisms for large-scale

distributed sensor networks”, in Proc. ACM CCS, 2003, pp. 62–72.

[97] S. Zhu, S. Xu, S. Setia, and S. Jajodia, “Establishing pairwise keys for secure commu-

nication in ad hoc networks: a probabilistic approach”, in Proc. IEEE ICNP, 2003, pp.

326–335.

www.manaraa.com

166

[98] S. Zhu, S. Setia, S. Jajodia, and P. Ning, “An Interleaved Hop-by-Hop Authentication

Scheme for Filtering of Injected False Data in Sensor Networks”, in Proc. IEEE Symposium

on Security and Privacy, pp. 259–271, 2004.

	2009
	Practical security scheme design for resource-constrained wireless networks
	Zhen Yu
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1 OVERVIEW
	1.1 Introduction
	1.2 Resource-constrained Wireless Networks
	1.2.1 Ubiquitous Computing
	1.2.2 Wireless Sensor Networks
	1.2.3 Wireless Personal Area Networks
	1.2.4 Observations

	1.3 Taxonomy of Malicious Attacks against Wireless Networks
	1.4 Information Assurance
	1.5 Objectives of Research
	1.6 Contributions of Research
	1.7 Dissertation Organization

	2 REVIEW OF LITERATURE
	2.1 Key Management for Wireless Sensor Networks
	2.1.1 Introduction
	2.1.2 Threat Model and Goals
	2.1.3 Taxonomy of Key Management Schemes
	2.1.4 Pairwise Key Management Schemes
	2.1.5 Group Key Management Schemes
	2.1.6 Global Key Management Scheme

	2.2 Filtering False Data Injection and DoS Attacks in Wireless Sensor Networks
	2.2.1 Introduction
	2.2.2 Survey of Existing Solutions

	2.3 Secure Network Coding
	2.3.1 Introduction
	2.3.2 Solutions to Wiretapping Attacks
	2.3.3 Solutions to Pollution Attacks

	3 ENHANCING CONFIDENTIALITY: Providing Key Management for Wireless Sensor Networks
	3.1 Introduction
	3.2 Problem Statement
	3.2.1 Deployment Model
	3.2.2 Threat Model
	3.2.3 Bootstrapping Problem

	3.3 Our Scheme
	3.3.1 Background: Blom's Key Management Scheme
	3.3.2 Overview
	3.3.3 Detailed Procedures
	3.3.4 Variants of Our Scheme
	3.3.5 Shape of Grids

	3.4 Connectivity Analysis
	3.4.1 Grid Size Control
	3.4.2 Transmission Range Setup

	3.5 Security Analysis
	3.5.1 Evaluation Metrics
	3.5.2 Theoretical Analysis of Local Security

	3.6 Simulation Study
	3.6.1 Simulation Setup
	3.6.2 Simulation Study on Local Security
	3.6.3 Simulation Study on Global Security
	3.6.4 Simulation Study on Connectivity
	3.6.5 Impact of Grid Size
	3.6.6 Impact of Estimation Error

	3.7 Conclusion

	4 ENHANCING AUTHENTICITY AND AVAILABILITY: Filtering False Data Injection and DOS Attacks in Wireless Sensor Networks
	4.1 Introduction
	4.2 Routing Protocols for Sensor Networks
	4.3 Problem Statement
	4.3.1 System Model
	4.3.2 Threat Model
	4.3.3 Goals

	4.4 Our Scheme
	4.4.1 Overview
	4.4.2 Detailed Procedures

	4.5 Performance Analysis
	4.5.1 Filtering capacity
	4.5.2 Energy Savings
	4.5.3 Filtering DoS Attacks
	4.5.4 Filtering Other Attacks

	4.6 Simulation Study
	4.6.1 Simulation Setup
	4.6.2 Simulation Results

	4.7 Conclusion

	5 ENHANCING INTEGRITY: Securing Network Coding against Pollution Attacks
	5.1 Introduction
	5.2 Problem Statement
	5.2.1 System Model
	5.2.2 Threat Model
	5.2.3 Goal

	5.3 Our Scheme
	5.3.1 The Framework of Hashing or Signature Schemes
	5.3.2 Overview and Detailed Procedures
	5.3.3 Batch Verification

	5.4 Security Analysis
	5.5 An Alternate Lightweight Scheme
	5.5.1 Detailed Procedures
	5.5.2 Security Analysis

	5.6 Experimental Results
	5.6.1 Experiment Setup
	5.6.2 Computation Overhead

	5.7 Application to Wireless Sensor Networks
	5.8 Conclusion

	6 ENHANCING INTEGRITY: Securing XOR Network Coding against Pollution Attacks
	6.1 Introduction
	6.2 Problem Statement
	6.2.1 System Model
	6.2.2 Threat Model and Goal

	6.3 Notation
	6.4 Our Scheme
	6.4.1 The Framework for Securing Network Coding against Pollution Attacks
	6.4.2 The Detailed Procedure of Our Scheme
	6.4.3 Batch Verification

	6.5 Performance Analysis
	6.5.1 Threat Analysis
	6.5.2 Security Analysis
	6.5.3 Analysis of Communication Overhead

	6.6 Experimental Results
	6.6.1 Experiment Setup
	6.6.2 Detection Capability
	6.6.3 Computation Overhead

	6.7 Conclusion and Future Work

	7 SUMMARY
	7.1 Conclusion
	7.2 Future Work

	BIBLIOGRAPHY

